Unformatted text preview:

1PhotovoltaicsPhotovoltaicsand Photodetectors and Photodetectors --part IIpart II@ MITMarch 11, 2003 – Organic Optoelectronics - Lecture 10• Organic Heterojunction Photovoltaic Cell• Organic Multilayer PhotodetectorData on Solar Cells and Photodetectors taken fromPeumans, Bulovic, and Forrest., Appl. Phys. Lett. 76, 2650 (2000) – solar cell Appl. Phys. Lett. 76, 3855 (2000) - photodetector2Organic Heterojunction PVsCBVBLDLDIncidentLightV3PhotovoltaicsPhotovoltaicsPhotodetectorsPhotodetectorsOptical power ⇒ electrical powerFIGURES OF MERRIT:Power conversion efficiencyFull solar intensitiesReliabilityConsume power to detect a signalFIGURES OF MERRIT:High external quantum efficiencyHigh bandwidthLow noise, low power consumption4•high absorbtion in the visible spectrum•have relaxed deposition requirements•can be manufactured in a low cost process (roll-to-roll, web-processing, etc.)•can be grown on thin, flexible substrates → light weight•can add value to existing products (window coatings, etc.)Solid state organic solar cellsCHALLENGE!Current power conversion efficiencies are too low for commercial implementation (especially at full solar intensities)505101520LaboratoryProductionCrystalline-SiPoly-SiAmorphous-SiOrganic[ % ]Solar Cell Power Efficiency6VACUUMCHAMBERTURBOPUMPCOLDTRAPROUGHINGPUMPsubstrateholderthicknessmonitorshutterGNDsubstratePOWERSUPPLIESsourceboatsDevice Preparation and Growth• Glass substrates precoated with ITO- 94% transparent-15 Ω/square• PrecleaningTergitol, TCEAcetone, 2-Propanol• Growth-5 x 10-7Torr-Room T- 20 to 2000 Ålayer thickness7History and Progress ‘86: Heterojunction Solar Cell• first heterojunction for efficient charge generation •~0.95% conversion efficiency• nearly ideal IVs (FF~0.65)• under full solar illumination(1 sun)‘90s: Polymer NetworksG. Yu et al., Science 270, 1789 (1995).• series resistance problem (low FF)•calculatedpower conversion efficiency of ~1.5%• not well matched to solar spectrumShaheen et al. , Appl. Phys. Lett. 78, 841 (2001).• power conversion efficiency ~2.5%• not well matched to solar spectrum• long term stability ?C.W. Tangη = 0.95%ff = 0.65η = 0.95%ff = 0.65-0.4 -0.2 0.0 0.2 0.4-3-2-10123Voltage [V]Current [mA/cm2] ISC= 2.3mA/cm 2VOC= 450mVTang, Appl Phys Lett. 48, 183 (1986).CuPc (300Å)PTCBI (500Å)GlassITOAg8LUMOHOMOD: CuPcA: PTCBI2344Photoinduced Charge-Transfer1231Exciton generation by absorption of light4Exciton diffusion over ~LDExciton dissociation by rapid and efficient charge transferCharge extraction by the internal electric fieldProcesses occuring at a Donor-Acceptor heterojunction123449Exciton Diffusion: Experiment and Theory0 40 80 120 1600.00.20.40.60.81.0experimenttheoryPL efficiency ratio ηLPTCBI[Angstrom]CuPcPTCBIPTCBI540nmPL1PL2()()121exp 211exp 2DDDtLPL LPL ttLη⎡⎤−−⋅⎢⎥⎣⎦==−⋅⎡⎤+−⋅⎢⎥⎣⎦•Photoluminescence (PL) probes the exciton lifetime•Exciton lifetime depends on proximity of donor-acceptor interfaceLD=(30±3)Å10Double HeterojunctionAgProblemSolution•cathode metal diffusion•deposition damage•exciton-plasmon interaction•vanishing optical field•electrical shortsIntroduce ‘Exciton Blocking Layer’ (EBL) to:•confine excitons to active region•act as a damage-absorberAgITOITOEBL~200Å11ITOCuPcPTCBIBCPAgglass substrateExciton Blocking Layer (EBL)0.70.90.85 eVCuPcEG=1.7PTCBIEG=1.7BCPEG=3.5ITOAgHOMOLUMOEnergy Band Diagramcourtesy of I. Hill & A. Kahn• conducts electrons• transparent• effectively blocks excitons• absorbs damage• separates active layers from metalBCP(2, 9-dimethyl, 4, 7-diphenyl,1, 10-phenanthroline)(aka bathocuproine)12051015202530CuPc and PTCBI Layer Thickness [Å]Quantum Efficiency, η [%]100 400200 800ηINTERNALηEXTERNALw/ EBLno EBLExciton Blocking Layer (EBL)Improves Thin Cell Efficiency>2.5-fold improvementin efficiencyPrevious best devices (Tang, ‘86)13Ag mirror / cathodeorganics + ITO (anode)molded substrate with collector profiles and coated with AgSolarIlluminationCROSS SECTION3-D VIEWPractical Realization:MicroMolded Winston Collectors14400 600 800 10000102030λ [nm]024Photon Flux [1018s-1m-2nm-1]13Quantum Efficiency, η [%]ηINTERNALAM1.5ηEXTERNALSolar SpectrumBroad Spectral ResponseMatches Solar Spectrumlight trapping90Å CuPc/ 90Å PTCBI15ISCVOC96062020064192-0.4 -0.2 0.0 0.2 0.4 0.6-80.0-60.0-40.0-20.00.020.0Voltage [V]Current [mA/cm2]1300 mW/cm2= 17 suns (AM1.5)VMAXIMAXI-V Response under Solar Illumination•Highest illumination levels to date•Record-high short circuit currents90Å CuPc/ 90Å PTCBI16ISC[mA/cm2]1101000.40.50.6VOC[V]10 100 10000.60.81.01.2Optical power [# suns] (AM1.5 spectrum)Optical power [mW/cm2] (AM1.5 spectrum)ηP[%]0.30.40.50.6FF0.1 1 10I-V Response under Varying Solar Illumination Intensitylinearmonotonic increasebroad plateauno drastic decrease171 10 100 10000.00.51.01.52.02.53.0no light trappingw/ light trappingOptical power [mW/cm2]Power Conversion Efficiency [%](2.4 + 0.3)%Ag apertureGlass SubstrateITO / Organic LayersAg cathode~10 suns Light Trapping Improves PV Efficiency ~2.5 Foldno light trappinglight trapping configuration(1.0 + 0.1)%60Å CuPc/ 60Å PTCBI18REFLECTING CATHODECOLLECTORMIRRORREFLECTIVEUNDERCOATTHIN PVGLASS SUBSTRATEPractical Realization:MicroMolded Winston Collectors•Raytracing calculations•Microcavity effects ignored•1D geometry•Mirror/cathode reflectivity: 95%•Cell absorption: 30%•ηEXT= 90% of ηINT•ηP= 2.7% (ideal = 3.0%)•Local intensity never exceeds 3 sunsPeumans et al, US Patents #6440, 769, Aug 27, 200219HEATPRESSUREMOLDSUPPORTPOLYMERSHAPEDPOLYMERIC FILMCollector Fabrication100-200µm100-200µmPeumans et al, US Patents #6440, 769, Aug 27, 200220METAL COATINGANTI-REFLECTION COATINGDEVICE DEPOSITIONTRANSPARENT POLYMERIC FILLERITO ANODEORGANICS: CuPc/PTCBI/BCPAg CATHODE200-400µmENCAPSULATING FILMCollector Fabrication2110 100 10001100CuPc and PTCBI Layer Thickness [Å]Internal Quantum Efficiency, η [%]30603006003060LD=100Å40Å20ÅηP=2.4%SingleHeterojunctionηP~1.0%1036improved materialgrowththinnercellsOutlook – towards future PVsPeumans et al., APL 76 (19), p. 2650 (2000).22Multilayer Organic PVIncidentLightV+V-Bulović and Forrest, patents: US 6,198,091 (2001); US 6,198,092 (2001); US 6,278,055 (2001) .THIN sub-PVs connected in PARALLEL• increased likelihood of exciton dissociation• decreased R• ISCof all sub-PVs add while VOC~constant23Adapted from A. Yakimov and


View Full Document

MIT 6 973 - Photovoltaics and Photodetectors

Download Photovoltaics and Photodetectors
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Photovoltaics and Photodetectors and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Photovoltaics and Photodetectors 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?