DOC PREVIEW
WUSTL MATH 132 - m132_E1sF05

This preview shows page 1-2-3-4-5-6 out of 18 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 18 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 132 Fall 2005 Exam I 1 . A Riemann sum for a function on an interval is said to be a n upper Riemann sum if, for each , the point in the subinterval is chosen so that ismaximized. Calculate the upper Riemann sum for , , and . (Use a partition of [a,b] into equal length subintervals.)a) 14 b) 16 c) 18 d) 20 e) 22 f) 24 g) 26 h) 28 i) 30 j) 32Solution : ( i )The nodes (points of the uniform partition) are> a := -1; b := 3; N := 4; Delta := (b-a)/N;> for j from 0 to N dox[j] := a + j*Delta;od;> f := x -> x^3-3*x+2;> Diff('f(x)',x)=factor(D(f)(x)); This calculation tells us that decreases from -1 to 1 ( = ( - )( + ) so ) and increases for > 1 . Therefore:> xi[1] := x[0]; xi[2] := x[1]; xi[3] := x[3]; xi[4] := x[4];> fnGraph := plot(f(x),x=-1..3, color=PLUM, thickness=2): > nodes := plot( [ seq([xi[j],f(xi[j])], j = 1..N)], style = POINT, symbol = CIRCLE, color = NAVY):> plots[display](fnGraph, nodes);> rect[1] := plottools[rectangle]([x[0],f(x[0])], [x[1],0], color = wheat):rect[2] := plottools[rectangle]([x[1],f(x[1])], [x[2],0], color = wheat):rect[3] := plottools[rectangle]([x[2],f(x[3])], [x[3],0], color = wheat):rect[4] := plottools[rectangle]([x[3],f(x[4])], [x[4],0], color = wheat):> plots[display](fnGraph, nodes,seq(rect[j],j=1..N));> ANSWER := (f(xi[1])+f(xi[2])+f(xi[3])+f(xi[4]))*Delta;2. Calculate .a) 1 b) c) d) 2 e) f) g) h) i) j) Solution : ( a )> F := unapply(int(sec(theta)*tan(theta), theta), theta);> F(Pi/3) - F(0);3. An antiderivative of is the function . If , what is ?a) b) c) d) e) f) g) 1 h) i) 2 j) 2 Solution : ( i )> restart;> F := x -> (x+exp(x))/(1+exp(x));> eqn1 := Int(f(x)+c,x = 0 .. 1) = F(1) - F(0) + c;> eqn2 := 5/2 = rhs(eqn1);> solve(eqn2,c);4. Calculate . a) 1 b) 2 c) d) e) f) g) h) i) j) Solution : ( c )> F := x -> x*ln(x); #This is an antiderivative of the integrand > F(exp(1)) - F(1);5. Suppose that and . What is ?a) 1 b) 2 c) 3 d) 4 e) 5 f) 6 g) 7 h) 8 i) 9 j) 10 Solution : ( d )> restart;> eqn1 := int(x^2+f(x),x = 0..3) = 17; > eqn2 := int(x^2,x = 0..3) + int(f(x),x = 0..3)= 17;> eqn3 := 9 + int(f(x),x = 0 .. 2) + int(f(x),x = 2 .. 3) = 17;> eqn4 := 9 + 4 + int(f(x),x = 2 .. 3) = 17;> solve( eqn4, int(f(x),x = 2 .. 3));6. Suppose that . The Mean Value Theorem for Integrals asserts that there is a pointin the interval [-1,2] such that where is the average value of for in the interval [1,7]. What is ?a) b) c) d) e) f) g) h) i) j) Solution : ( f )> f := x -> x^2+6*x; interval := -1 .. 2;> Ave := int(f(x), x=interval)/3;> solve(f(x) = Ave, x); 7. Calculate at .a) 0 b) 1 c) 2 d) 3 e) 4 f) 5 g) 6 h) 7 i) 8 j) 9 Solution : ( c )> J := Int((9*t+tan(Pi*t/4))/(t^2+4),t = -1 .. x);> Integrand := student[integrand](J);> simplify(subs(t=1, Integrand)); 8. Suppose that . What is ? (The derivative of F(x) at ). a) 1 b) c) d) 2 e) f) g) h) i) j) Solution : ( b ) > restart: with(student):> F := (x) -> Int(sqrt(7/2+t^2),t = 0..sin(x));> D(F)(x); > simplify(D(F)(Pi/4));Where answer comes from:> derivative := subs(t=sin(x), integrand(F(x)))*D(sin)(x);> simplify(subs(x=Pi/4, derivative)); 9 . Suppose that . What is D(F)(2)? (The derivative of F(x) at x =5). a) 13 b) 20 c) 27 d) 33 e) 40 f) 47 g) 53 h) 60 i) 67 j) 73 Solution : ( f )> F := (x) -> Int(sqrt(144+t^2),t = x .. (3*x+1));> simplify(D(F)(5));Where answer comes from:> h := x -> 3*x+1; g := x -> x;> derivative := subs(t=h(x), integrand(F(x)))*D(h)(x) - subs(t=g(x), integrand(F(x)))*D(g)(x);> simplify(subs(x=5, derivative)); 10. Calculate . a) 3 b) 4 c) 6 d) 8 e) 9 f) 8 g) 12 h) 15 i) 16 j) 20Solution : ( h )> J1 := Int(4*cos(x)*(sin(x)+1)^3,x = 0 .. Pi/2);> J2 := changevar(u = sin(x) + 1, J1, u);> value(J2); 11. Calculate .a) b) c) d) e) f) g) h) i) j) Solution : ( i )> J1 := Int(x*sqrt(x-3),x = 3..4);> J2 := changevar(u = x-3, J1, u);> J3 := Int(expand(integrand(J2)), u = 0 .. 1);> value(J3);12. Calculate .a) b) c) d) e) f) g) h) i) j) Solution : ( e )> J1 := Int(1/(x+x*ln(x)),x = 1 .. exp(1));> J2 := Int(factor(integrand(J1)), x = 1 .. exp(1));> J3 := changevar(u=1+ln(x), J2, u);> value(J3);13. Find the solutions x = a and x = b of the equation sin(x) = cos(x) in the first and third quadrantsrespectively. Calculate the area between and for in [a,b].a) 1 b) c) 2 d) e) f) g) h) i) j) 4 Solution : ( e )> solve( sin(x) = cos(x) );> plot([sin(x) , cos(x)], x = Pi/4 .. 5*Pi/4, color = [NAVY,MAROON]);> int(sin(x) - cos(x), x = Pi/4 .. 5*Pi/4);> 14. At irregular intervals during the first 10 seconds of a race, a radar gun recorded the following speeds (in m/s) of a runner: .Given that distance at time is expressed by the formula , estimate thedistance (in m) the runner has covered during those 10 seconds.


View Full Document

WUSTL MATH 132 - m132_E1sF05

Documents in this Course
shapiro1

shapiro1

11 pages

shapiro

shapiro

11 pages

shapiro1

shapiro1

11 pages

shapiro

shapiro

11 pages

Load more
Download m132_E1sF05
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view m132_E1sF05 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view m132_E1sF05 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?