DOC PREVIEW
TAMU MATH 151 - AppendixD

This preview shows page 1 out of 4 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Math 151 Appendix D Trigonometry Review Measurement of Angles Angles can be measured in degrees or radians One complete revolution corresponds to 360 or 2 radians So 360 2 radians which gives the conversion formula radians 180 Example A Convert 72 to radians B Convert 3 to degrees 4 Trigonometric Ratios The hypotenuse of a right triangle is the longest side and is opposite the right angle Trigonometric functions are defined as ratios of the lengths of the sides of a right triangle These are the basis for the trigonometric functions in which we replace the triangle by points on a plane a length of opposite side opp sin A c length of hypotenuse hyp b length of adjacent side adj c length of hypotenuse hyp a length of opposite side opp tan A b length of adjacent side adj cos A c length of hypotenuse hyp a length of opposite side opp c length of hypotenuse hyp sec A b length of adjacent side adj b length of adjacent side adj cot A a length of opposite side opp csc A Pythagorean Theorem For any right triangle with hypotenuse c and sides a and b c2 a2 b2 Math 151 30 60 90 Triangle In a 30 60 90 triangle the length of the side opposite the 30 angle is half the length of the hypotenuse 1 2 1 60 2 1 60 1 1 60 60 1 2 2 30 30 30 30 3 2 3 2 3 45 45 90 Isosceles Right Triangle 2 2 45 45 1 2 1 2 45 2 45 1 The Unit Circle 3 2 3 Math 151 Example Find all trig ratios for Example If cos x 2 3 1 and 0 x find the values of the other trig functions evaluated at x 5 2 Trigonometric Identities In addition to the values on the Unit Circle you will be expected to readily recall the following identities The Pythagorean identities sin 2 cos 2 1 1 tan 2 sec 2 1 cot 2 sin 2 The quotient and reciprocal identities sec 1 cos csc 1 sin tan sin cos The double angle formulas sin 2 2sin cos cos 2 2cos 2 1 cos 2 1 2sin 2 1 1 cos 2 2 1 sin 2 1 cos 2 2 cos 2 Example Solve the following equations for x where 0 x 2 A 2cos x 1 0 B 2cos x sin 2x 0 cot cos 1 sin tan Math 151 Example If sec x 5 and x 0 what is the value of sin 2x 3 2 Graphs of Sine Cosine and Tangent Functions Example Sketch a graph of f x 1 cos x Example Sketch a graph of f x tan x 2


View Full Document

TAMU MATH 151 - AppendixD

Documents in this Course
Lab 9

Lab 9

5 pages

Lab 8

Lab 8

9 pages

Lab 7

Lab 7

5 pages

Lab 6

Lab 6

5 pages

Lab 5

Lab 5

5 pages

Lab 4

Lab 4

6 pages

Lab 3

Lab 3

6 pages

Lab 2

Lab 2

4 pages

Lab 1

Lab 1

3 pages

Notes

Notes

15 pages

Notes

Notes

1 pages

Notes

Notes

39 pages

Vectors

Vectors

7 pages

2011a_x3b

2011a_x3b

10 pages

lec5_5-7

lec5_5-7

33 pages

lec3_6-9

lec3_6-9

26 pages

lec4_1-2

lec4_1-2

25 pages

2_7

2_7

4 pages

handout

handout

2 pages

2010c_x1b

2010c_x1b

10 pages

lec3_1-3

lec3_1-3

26 pages

2011a_x3a

2011a_x3a

10 pages

LIFE

LIFE

2 pages

LIFEans

LIFEans

2 pages

s4.6

s4.6

4 pages

app_D

app_D

7 pages

lec13-23

lec13-23

28 pages

2009a_x2b

2009a_x2b

11 pages

syll5

syll5

2 pages

lec3_a-c

lec3_a-c

34 pages

syll151

syll151

2 pages

lec4_5-8

lec4_5-8

31 pages

lec6_3-4

lec6_3-4

37 pages

lec2_5-6

lec2_5-6

29 pages

2010a_x3b

2010a_x3b

12 pages

2008c_x2b

2008c_x2b

11 pages

lec5_1-3

lec5_1-3

24 pages

Exam 2A

Exam 2A

12 pages

handout

handout

2 pages

lec3_1-3

lec3_1-3

26 pages

L3A

L3A

3 pages

lec3_a-c

lec3_a-c

34 pages

lec4_3-4

lec4_3-4

15 pages

151wir8ws

151wir8ws

11 pages

lec4_5-8

lec4_5-8

31 pages

2_2

2_2

2 pages

2010c_x1a

2010c_x1a

10 pages

6_5

6_5

2 pages

lec3_4-5

lec3_4-5

29 pages

2010a_x1b

2010a_x1b

12 pages

2010a_x1a

2010a_x1a

12 pages

Load more
Download AppendixD
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view AppendixD and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view AppendixD and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?