DOC PREVIEW
TAMU MATH 151 - 2011a_x3a

This preview shows page 1-2-3 out of 10 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 10 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MATH 151 SPRING 2011 COMMON EXAM III VERSION A LAST NAME First name print INSTRUCTOR SECTION NUMBER UIN SEAT NUMBER DIRECTIONS 1 The use of a calculator laptop or computer is prohibited 2 In Part 1 Problems 1 12 mark the correct choice on your ScanTron using a No 2 pencil For your own records also record your choices on your exam 3 In Part 2 Problems 13 17 present your solutions in the space provided Show all your work neatly and concisely and clearly indicate your final answer You will be graded not merely on the final answer but also on the quality and correctness of the work leading up to it 4 Be sure to write your name section and version letter of the exam on the ScanTron form THE AGGIE CODE OF HONOR An Aggie does not lie cheat or steal or tolerate those who do Signature DO NOT WRITE BELOW Question Points Awarded Points 1 12 48 13 12 14 15 15 8 16 9 17 8 TOTAL 100 1 ex cos x 2x x 0 x2 2x 1 Find the limit lim a 1 b 1 2 c 0 1 d 2 e Limit does not exist 2 Solve the equation ln x ln x 1 ln x 4 for x a x 0 and x 3 b x 4 only c x 2 and x 2 d x 3 only e x 2 only 3 Which graph of f below has the property that the derivative f is always positive and decreasing e None of these graphs 2 For questions 4 5 the graph of the FIRST DERIVATIVE of a function f is shown below 4 On which interval s is the ORIGINAL FUNCTION f decreasing a b d b a c e c c d b d e None of these 5 At what value s of x does the ORIGINAL FUNCTION f have a local minimum a x a x c and x e b x c only c x a and x e d x b only e x b and x d 6 Find the value of log4 1 8 1 32 2 3 1 2 2 3 2 a b c d e 3 7 A bacteria culture starts with 200 bacteria and triples in size every half hour Assuming exponential growth how many bacteria are there after 45 minutes ignore any appropriate rounding a 600 3 b 750 c 400 2 d 1200 ln 3 2 e 800 ln 3 8 Find the value of cos tan 1 4 1 a 17 4 b 17 1 c 15 4 d 15 15 e 4 9 Find the absolute maximum and absolute minimum values of the function f x x3 3x 1 on the interval 1 3 a minimum value 4 maximum value 20 b minimum value 1 maximum value 3 c minimum value 1 maximum value 19 d minimum value 3 maximum value 19 e minimum value 8 maximum value 10 4 10 Which of the following is an antiderivative of f x ln x 1 ln x 2 2 b ex 1 c x d x ln x x a e x ln x x f x h f x h 0 h 11 If f x 5x what is lim a x5x 1 b ln 5 5x c Does not exist d 5x 5x e x 2 12 The acceleration of a car is given by a t 3t 2 in ft sec If the car is at rest at time t 0 what is the car s velocity when t 2 13 ft sec 4 b 8 ft sec a c 12 ft sec 9 d ft sec 2 e 10 ft sec 5 PART II WORK OUT Directions Present your solutions in the space provided Show all your work neatly and concisely and Box your final answer You will be graded not merely on the final answer but also on the quality and correctness of the work leading up to it 13 6 points each a Find and simplify the derivative of f x x arctan x b If g x ln 3x 2 e4x find g 0 6 1 ln 1 x2 2 14 The derivative of a function f is given by f x x 2 e3x a 4 points Find the intervals where the original function f is increasing or decreasing b 3 points List and classify as max or min the x coordinates of all local extrema of the original function f c 8 points Find the intervals where the original function f is concave upward or concave downward 7 15 8 points A rectangular container with no top and a square bottom is to have a volume of 8 ft3 Material for the sides costs 1 per ft2 and material for the bottom costs 4 per ft2 Find the dimensions that will minimize the cost of the container Clearly show that your answer is indeed a minimum 8 is shown 16 9 points The region that lies under the graph of f x cos2 x from x 0 to x 3 below a Using sigma notation write an expression to n approximate the area under the graph of o y f x with rectangles using a partition P 0 with x i being the right endpoint 4 3 of each subinterval b Evaluate the rectangle area expression in part a Your answer does not have to be simplified but all trig expressions which can be evaluated must be c On the graph above sketch the approximating rectangles 9 2 17 8 points Find the limit lim cos x 1 x x 0 10


View Full Document

TAMU MATH 151 - 2011a_x3a

Documents in this Course
Lab 9

Lab 9

5 pages

Lab 8

Lab 8

9 pages

Lab 7

Lab 7

5 pages

Lab 6

Lab 6

5 pages

Lab 5

Lab 5

5 pages

Lab 4

Lab 4

6 pages

Lab 3

Lab 3

6 pages

Lab 2

Lab 2

4 pages

Lab 1

Lab 1

3 pages

Notes

Notes

15 pages

Notes

Notes

1 pages

Notes

Notes

39 pages

Vectors

Vectors

7 pages

2011a_x3b

2011a_x3b

10 pages

lec5_5-7

lec5_5-7

33 pages

lec3_6-9

lec3_6-9

26 pages

lec4_1-2

lec4_1-2

25 pages

2_7

2_7

4 pages

handout

handout

2 pages

2010c_x1b

2010c_x1b

10 pages

lec3_1-3

lec3_1-3

26 pages

LIFE

LIFE

2 pages

LIFEans

LIFEans

2 pages

s4.6

s4.6

4 pages

app_D

app_D

7 pages

lec13-23

lec13-23

28 pages

2009a_x2b

2009a_x2b

11 pages

syll5

syll5

2 pages

lec3_a-c

lec3_a-c

34 pages

syll151

syll151

2 pages

lec4_5-8

lec4_5-8

31 pages

lec6_3-4

lec6_3-4

37 pages

lec2_5-6

lec2_5-6

29 pages

2010a_x3b

2010a_x3b

12 pages

2008c_x2b

2008c_x2b

11 pages

lec5_1-3

lec5_1-3

24 pages

Exam 2A

Exam 2A

12 pages

handout

handout

2 pages

lec3_1-3

lec3_1-3

26 pages

L3A

L3A

3 pages

lec3_a-c

lec3_a-c

34 pages

lec4_3-4

lec4_3-4

15 pages

151wir8ws

151wir8ws

11 pages

lec4_5-8

lec4_5-8

31 pages

2_2

2_2

2 pages

2010c_x1a

2010c_x1a

10 pages

6_5

6_5

2 pages

lec3_4-5

lec3_4-5

29 pages

2010a_x1b

2010a_x1b

12 pages

2010a_x1a

2010a_x1a

12 pages

Load more
Download 2011a_x3a
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 2011a_x3a and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 2011a_x3a and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?