DOC PREVIEW
CMU CS 10701 - Recitation: SVD and dimensionality reduction

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Recitation SVD and dimensionality reduction Zhenzhen Kou Thursday April 21 2005 SVD Intuition find the axis that shows the greatest variation and project all points into this axis f2 e1 e2 f1 SVD Mathematical Background XX k mXn UUk m X kr SxSk kr X rk V Vk kr X n The reconstructed matrix Xk Uk Sk Vk is the closest rank k matrix to the original matrix R SVD The mathematical formulation Let X be the M x N matrix of M N dimensional points SVD decomposition X U x S x VT U M x M U is orthogonal UTU I columns of U are the orthogonal eigenvectors of XX T called the left singular vectors of X V N x N V is orthogonal VTV I columns of V are the orthogonal eigenvectors of X TX called the right singular vectors of X S M x N diagonal matrix consisting of r non zero values in descending order square root of the eigenvalues of XX T or XTX r is the rank of the symmetric matrices called the singular values SVD Interpretation SVD Interpretation X U S VT example 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 5 29 x v1 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 SVD Interpretation X U S VT example variance spread on the v1 axis 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 5 29 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 SVD Interpretation X U S VT example U gives the coordinates of the points in the projection axis 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 5 29 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 Dimensionality reduction set the smallest eigenvalues to zero 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 5 29 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 Dimensionality reduction 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 0 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 Dimensionality reduction 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 0 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 Dimensionality reduction 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 x 9 64 x 0 58 0 58 0 58 0 0 Dimensionality reduction 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dimensionality reduction Equivalent spectral decomposition of the matrix 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 0 18 0 36 0 18 0 90 0 0 0 0 0 0 0 0 53 0 80 0 27 x 9 64 0 0 5 29 x 0 58 0 58 0 58 0 0 0 0 0 0 71 0 71 Dimensionality reduction Equivalent spectral decomposition of the matrix 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 u1 u2 x 1 2 x v1 v2 Dimensionality reduction spectral decomposition of the matrix m n 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 r terms 1 u1 vT1 nx1 1xm 2 u2 vT2 Dimensionality reduction approximation dim reduction by keeping the first few terms Q how many m n 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 1 u1 vT1 2 u2 vT2 assume 1 2 Dimensionality reduction A heuristic keep 80 90 of energy sum of squares of i s m n 1 2 1 5 0 0 0 1 2 1 5 0 0 0 1 2 1 5 0 0 0 0 0 0 0 2 3 1 0 0 0 0 2 3 1 1 u1 vT1 2 u2 vT2 assume 1 2 Another example Eigenface The PCA problem in HW5 Face data X Eigenvectors associated with the first few large eigenvalues of XXT have face like images Dimensionality reduction Matrix V in the SVD decomposition X USVT is used to transform the data XV US defines the transformed dataset …


View Full Document

CMU CS 10701 - Recitation: SVD and dimensionality reduction

Documents in this Course
lecture

lecture

12 pages

lecture

lecture

17 pages

HMMs

HMMs

40 pages

lecture

lecture

15 pages

lecture

lecture

20 pages

Notes

Notes

10 pages

Notes

Notes

15 pages

Lecture

Lecture

22 pages

Lecture

Lecture

13 pages

Lecture

Lecture

24 pages

Lecture9

Lecture9

38 pages

lecture

lecture

26 pages

lecture

lecture

13 pages

Lecture

Lecture

5 pages

lecture

lecture

18 pages

lecture

lecture

22 pages

Boosting

Boosting

11 pages

lecture

lecture

16 pages

lecture

lecture

20 pages

Lecture

Lecture

20 pages

Lecture

Lecture

39 pages

Lecture

Lecture

14 pages

Lecture

Lecture

18 pages

Lecture

Lecture

13 pages

Exam

Exam

10 pages

Lecture

Lecture

27 pages

Lecture

Lecture

15 pages

Lecture

Lecture

24 pages

Lecture

Lecture

16 pages

Lecture

Lecture

23 pages

Lecture6

Lecture6

28 pages

Notes

Notes

34 pages

lecture

lecture

15 pages

Midterm

Midterm

11 pages

lecture

lecture

11 pages

lecture

lecture

23 pages

Boosting

Boosting

35 pages

Lecture

Lecture

49 pages

Lecture

Lecture

22 pages

Lecture

Lecture

16 pages

Lecture

Lecture

18 pages

Lecture

Lecture

35 pages

lecture

lecture

22 pages

lecture

lecture

24 pages

Midterm

Midterm

17 pages

exam

exam

15 pages

Lecture12

Lecture12

32 pages

lecture

lecture

19 pages

Lecture

Lecture

32 pages

boosting

boosting

11 pages

pca-mdps

pca-mdps

56 pages

bns

bns

45 pages

mdps

mdps

42 pages

svms

svms

10 pages

Notes

Notes

12 pages

lecture

lecture

42 pages

lecture

lecture

29 pages

lecture

lecture

15 pages

Lecture

Lecture

12 pages

Lecture

Lecture

24 pages

Lecture

Lecture

22 pages

Midterm

Midterm

5 pages

mdps-rl

mdps-rl

26 pages

Load more
Download Recitation: SVD and dimensionality reduction
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Recitation: SVD and dimensionality reduction and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Recitation: SVD and dimensionality reduction and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?