DOC PREVIEW
USC EE 541 - 51937

This preview shows page 1-2-23-24 out of 24 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 24 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Lecture OverviewNMOS Floating Voltage CellFloating Voltage RealizationCOMFET Floating Voltage CellCOMFET Linear TransconductorComments On COMFET Linear OTANMOS Linear TransconductorNMOS Transconductor AnalysisSallen-Key Active RC FilterSallen-Key Equivalent CircuitTransfer CharacteristicDesign-Oriented AnalysisBandwidth FunctionFrequency ResponseOptimal Element RatioMulti-Pole Sallen-Key FilterButterworth 4-Pole FilterButterworth 4-Pole Design ExampleDesign Example, Cont’dFinalized DesignFrequency Response SimulationFrequency Response CommentsPulse Response SimulationEE 541Class LectureSupplementProf. John Choma, ProfessorDepartment of Electrical Engineering-ElectrophysicsUniversity of Southern CaliforniaUniversity Park; MC: 0271; PHE #604Los Angeles, California 90089-0271213-740-4692 [USC Office]213-740-7581 [USC Fax][email protected] FilterIssuesFall 2006 SemesterUniversity of Southern California Choma: EE 5412Lecture OverviewLecture Overviewz Operational Transconductor NMOS Floating Voltage CellBasic ConceptCircuit Realization COMFET Floating Voltage Cell COMFET Linear Transconductor NMOS Linear Transconductorz Sallen-Key Filter Basic Architecture ShortfallsPotential InstabilityFinite Amplifier Output Resistance 4-Pole Butterworth ExampleUniversity of Southern California Choma: EE 5413NMOS Floating Voltage CellNMOS Floating Voltage Cell() ()22nnd1 1 2 x hn d2 2 1 x hnKKWWVVVIVVVV2L 2L = −+− = −+−   +−Vx V1M1Id1Vgs1+−+−Vx V2M2Id2Vgs2+−−VssNote:Vgs1= V1–V2+ Vx Vgs2= V2–V1+ Vxz Requirements M1 And M2 Matched Substrates Appropriately Back Biasedz Analysisz Result Linearity Of Differential I/O Relationship Transconductance Tunable By VxIV()()d1 d2 me 1 2me n x hnII GVVWG2K VVL−= −≡−University of Southern California Choma: EE 5414V1M1i Id1 Q+Vx+−V2M2i + Id2 Q−VssM3kI iQd2−M4kI iQd1−Vx+−x k x k(k 1)I+Q(k 1)I+Q+Vdd()()()()()d1 Q d2 Q me 1 2me n x hnnQiI iI GVVWG2K VVL8K W L I+− + = −=−=Floating Voltage RealizationFloating Voltage RealizationRequirement:kIQ>> |id1|, |id2|z Analysisz Comments M3 And M4 Behave As Nominally Constant Floating Voltage Sources All Transistors Matched Except For Indicated Gate Aspect Ratios Substrates Are Reverse Biased Currentsid1, id2Are Signal CurrentsIQIs A Quiescent Current Only n−Channel Transistors Used In Signal Paths()()2QnQxhnxhnn2IKkWkI V V V V2L KWL≈−≈+University of Southern California Choma: EE 5415Parametric Review:pnnn n pp pnpWWKK K KLLhe hn hpVVV=+()2nedgeheKIVV2=−ne nn pp111KKK+COMFET Floating Voltage CellCOMFET Floating Voltage CellId1M1aM1b +−Vx V1Id2M2aM2b+−Vx V2Id1Id2z Analysisz Differential Output Currentz Comments Linear Differential I/O Relationship Effective Transconductance, Gme, Tunable Via Vx Wide Tunability Range Owing To Vhe= Vhn+ Vhp()()22ne ned1 1 2 x he d2 2 1 x heKKIVVVVIVVVV22=−+− =−+−()()d1 d2 me 1 2me ne x heIIGVVG2KVV−= −=−University of Southern California Choma: EE 5416Id1IQIQM1aM1bV1Id1M4bM3aIQ−VssVaId2M2aM2bV2Id2M3bM4aIQVb+Vdd+−Vx+−VxCOMFET Linear TransconductorCOMFET Linear Transconductorz Analysisz Results()() ()2QneQxhexhe 1b2ane22ne ned1 1 a he d 2 2 b he2IKIVV V V VV VV2KKKIVVV IVVV22=−⇒=+ =−=−=−− =−−()()d1 d2 me 1 2me ne x he ne QII GVVG2KVV 8KI−= −=−=University of Southern California Choma: EE 5417Comments On COMFET Linear OTAComments On COMFET Linear OTAz All COMFET Pairs Must Be Matched M1a−M1b Matched To M2a−M2b M3a−M3b Matched To M4a−M4b Ideally, All n-Channel And p-Channel Devices Respectively Matchedz Signals Linear Differential I/O Relationship Inner COMFETs Do Not Conduct Signal Currents Inner COMFETs Conduct Current IQ, Which Controls Effective Transconductance, Gmez Biasing All Substrates Back Biased Not Especially Amenable To Low Voltage Applicationsz Applications Moderate Speed OTA For OTA-C Filter Applications Class AB Stage To Improve Slew Rate Of CMOS Op-AmpsUniversity of Southern California Choma: EE 5418NMOS Linear TransconductorNMOS Linear TransconductorM3M7M4M8M6−VssV1V2V VQss−M5M1IdaM2IdbVxIss+Vdd+ − V Q +− VQM1, M2, M5, M6Are Matchedz No Signal Currents In Transistors M3-M4 And M7-M8z Voltage VQ Biases Gate Source Terminals Of M3-M4 And M7-M8 Controls Effective Differential TransconductanceUniversity of Southern California Choma: EE 5419()()()()() ()22nnda 1 x hn 2 Q x hn22nndb 2 x hn 1 Q x hnda db n Q 1 2 me 1 2KKWWI VVV VV VV2L 2LKKWWIVVV VVVV2L 2LWII K VVVGVVL =−−+−−−   =−−+−−−  ⇒−= −= −M3M7M4M8M6−VssV1V2V VQss−M5M1IdaM2IdbVxIss+Vdd+ − V Q +− VQNMOS Transconductor AnalysisNMOS Transconductor AnalysisUniversity of Southern California Choma: EE 54110SallenSallen--Key Active RC FilterKey Active RC Filterz Topology Lowpass Structure Bandpass And HighpassStructures Can Be Realized Lowpass Version Common InBaseband CommunicationSystem Applicationsz Amplifier Simple Voltage Amplifier With Open Loop Gain Of K Desirable To Design Amplifier For Unity GainMaximizes Bandwidth And Unity Gain FrequencyMaximizes Linearity Because Of Reduced Output SwingAvoids Network Instability Issues¾Note Positive Feedback Through Capacitance C1¾Network Can Oscillate For Large Open Loop Voltage GainAmplifier Has Parasitic Output Resistance (Ro) And Capacitance (Co)+−KR2R1C2C1VoutVinViUniversity of Southern California Choma: EE 54111CoR2R1C2C1VoutVinViRo+−KViz Modelz Parameters Resistances: Capacitances: Amplifier: Assume K = 1 Normalized Frequency:p = sRC = sR1C1z Transfer Function, H(p) = Vout/Vin+−KR2R1C2C1VoutVinVi21orRNR NRRkR==21ocCMC MCCkC==()()() ( )2rr23rc r rc rc1pk pkMN.1 pMN 1 k k 1 p MN kMN 1 kk 1 M MN pkkMNH(p)+++++++++++++=SallenSallen--Key Equivalent CircuitKey Equivalent CircuitUniversity of Southern California Choma: EE 54112Transfer CharacteristicTransfer Characteristicz Transfer Relationship Based On Model IdealizedRo= 0 → kr= 0Co= 0 → kc= 0Functionz Comparisons Ideal Response Is Second Order With No Finite


View Full Document

USC EE 541 - 51937

Documents in this Course
49596

49596

54 pages

49585

49585

8 pages

50503

50503

39 pages

49593

49593

36 pages

49602

49602

18 pages

49600

49600

66 pages

49598

49598

35 pages

49597

49597

48 pages

49711

49711

50 pages

49605

49605

27 pages

49599

49599

35 pages

Load more
Download 51937
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 51937 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 51937 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?