DOC PREVIEW
MIT 3 11 - Wind Shear Detection

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

M.E.WeberandT.A.NoyesWindShearDetectionwithAirportSurveillanceRadarsAirportsurveillanceradars(ASR)utilize abroad,cosecant-squaredelevationbeampattern,rapidazimuthalantennascanning,andcoherentpulsed-Dopplerprocessingtodetect.andtrackapproachinganddepartingaircraft.Theseradars,becauseoflocation,rapidscanrate,anddirectairtrafficcontrol(ATe)datalink,canalsoprovideflightcontrollerswithtimelyinformationonweatherconditionsthatarehazardoustoaircraft.Withanaddedprocessingchannel,anupgradedASRcanautomaticallydetectregionsoflow-altitudewindshear.ThisupgradecanprovidewindshearwarningsatairportswherelowtrafficvolumeorinfrequentthunderstormactivityprecludesthedeploymentofadedicatedTerminalDopplerWeatherRadar(TDWR). Fieldmeasure-mentsandanalysisconductedbyLincolnLaboratoryindicatethattheprincipaltechnicalchallengesforlow-altitudewindsheardetectionwithanASR-ground-cluttersuppression,estimationofnear-surfaceradialvelocity,andautomaticwindshearhazardrecognition-eanbesuccessfullymetformicroburstsaccompaniedbyrainatthesurface.Thisarticledescribesradarmodificationsandprocessingtechniquesthatallowairportsurveillanceradars(ASR)todetectmicroburst-generatedlow-altitudewindshear.Microburstshavebeenidentifiedastheprimarycauseof12majoraircarrieraccidentssince1970,resultinginthelossof575lives.Forairportswithlowtrafficdensityorinfrequentthunderstormactiv-ity,anupgradetoASRsprovideswindshearwarningsatalowercostthanthatofdedicatedwindsheardetectionsensors.ModerndigitalsignalprocessingforthenewestASRs-theASR-9s-generallyelimi-natesclutterfromprecipitationandgroundscatterers[l,2].EarlyacceptancetestingoftheASR-9, however,indicatedthatworkingairtraf-ficcontrollersactuallymadeconsiderableuseoftheweather-echoinformationontheirdisplays.Toreinsertweatherdatainanoninterferingmanner,theASR-9'ssignalprocessorwasaug-mentedwithadedicatedchannelforprocessinganddisplayingsixquantitativelevelsofpreci-pitationreflectivity(Le.,rainrate)[2, 3].Thisprocessordoesnotutilizetheradar'sco-herence.otherthanforDopplerfilteringofTheLincolnLaboratoryJoumQ~Volume 2.Number3 (1989)stationaryground-clutterechoes.TechniquestoextendtheASR'sweathermeasurementcapabilitytoallowforthedetec-tionofthunderstorm-generatedlow-altitudewindshearmustincorporate(a)signalprocess-ingforsuppressinggroundclutterandestimat-ingthenear-surfaceradialwindcomponentineachradarresolutioncell.and(b)imagepro-cesssingforautomaticallydetectinghazardousshearintheresultingvelocity field.AlgorithmsthataccomplishthesefunctionshavebeenevaluatedextensivelywithsimulatedweathersignalsandmeasurementsfromanexperimentalASRinHuntsville,Ala.Ouranaly-sisindicatesthatasuitablymodifiedASRcouldwithhighconfidencedetectmicroburstsaccom-paniedbyrainatthesurface-thepredominantsafetyhazardforaircraftinmanypartsoftheUnitedStates.ThefollowingsectiondescribesthebackgroundandpotentialoperationalroleofanASR-basedwindsheardetectionsystem.Wethendiscusstheprimarytechnicalissuesforachievingthiscapability,anddeSCribeourevaluationofprocessingmethodsthataddresstheseissues.511WeberetaI.-WindShearDetectionwithAirportSurveillanceRadarsBackgroundandOperationalMissionFigure1illustratesthetwoprincipalcausesoflow-altitudewindshear.InFig. l(a),anin-tensethunderstormdowndraftencounterstheearth'ssurfaceandproducesabriefoutburstofhighlydivergenthorizontalwinds,ormicro-burst(4).Aircraftthatpenetrateamicroburstontakeofforlandingexperiencehead-wind-to-tail-windvelocityshearcompoundedbyadowndraftinthemicroburstcore.Gustfrontsarethunderstormoutflowswhoseleadingedgespropagateawayfromthegeneratingprecipita-tion,asshowninFig. l(b) (5).Becausethewindshearencounteredbyanaircraftthatpenetratesagustfrontincreasestheplane'slift,agustfrontisconsideredlesshazardousthanthewindshearassociatedwithamicroburst.Thewindsbehindthegustfront,however,areturbulent,andthelong-termchangeofwinddirectionfollowingthepassageofagustfrontaffectsrunwayoperations.Trackingandpredictinggustfrontarrivalsatmajorairports~111l'2000"',CompensatingConvergence.s~F1500...J•Downdraft...CJ~............~......E~,...Ol1000O'i ,...'Qj2>"...I,&,,<v?3,C,~,,500&<:',,vro'?i,'-:-Outflow:\,II-2000-100001000 2000Distance Relative to Downdraft Center (m)(a)2015Turbulent AreaGust Front EnvelopeMultiple Surges10Distance from Gust Front (km)(b)3000 E...JCJ2000~EOl'Qj1000 I5.Turbulent AreaFig.1-(a)Vertical cross sectionofmicroburst wind field. (b) Vertical cross sectionofgust front (redrawn from Goff, Ref.5).512The Lincoln LaboratoryJournal.Volume2.Number3 (1989)WeberetaI.-WindShearDetectionwithAiTportSW"VeillanceRadarswillallowmoreefficientuseofrunways.Inresponsetothehazardsofwindshear,theFederalAviationAdministration(FAA)initiatedatwo-partenhancementtoitsterminal-areaweatherinformationsystem.Theairportnet-workofsurfacewind-speedandwind-directionsensors-theLowLevel WindShearAlertSys-tem(LLWAS)-isbeingimprovedbyareworkeddetectionalgorithmand,atmajorairports,anincreasednumberofsensors[6).Inaddition,adedicatedmicrowaveTerminalDopplerWeatherRadar(TDWR)willbedeployedat45airportstomeasuretheradar-reflectivityandradial-velocitysignaturesassociatedwithlow-alti-tudewindshear[7).ASRswereinitiallyrejectedascandidatewindsheardetectionsensorsbecauseoftheirperceiveddeficienciesinsensitivityandground-clutterrejection,aswellasaninabilitytoresolvenear-surfacethunderstormoutflowswiththebroadelevationbeams.Totheextentthattheseproblemscanbeovercome, however, ASR-9swillcomplementthededicatedwindshearde-tectionsensorsinthreeareas:(1)Airportswithlow trafficvolumeorinregionswithinfrequentthunderstormactivitymaynotwarrantadedicatedTDWRorenhancedLLWAS.A modifiedASRcouldprovidewindshearprotectionattheseairportsatasmallercostthanthededicatedsystems.(2)AtairportsequippedwithenhancedLLWASbutlackingTDWR,datafromanASRcouldreinforceLLWASwindshearreportsanddetectwindshearinopera-tionallysignificantareasnotcoveredbythesurfacestationnetwork.(3)Atairportsslatedto receive a TDWR,ad-ditionalradarwindmeasurementsfromanASRcouldhelptoreducehead-wind-tail-windshear-estimateinaccura-ciesthatresultwhenamicroburstout-flowisasymmetric.ThesitingoftheASRwill often provide abetterviewinganglethantheTDWR forhead-wind-tail-windshearmeasurementsalongsomerun-ways. Alternately,datafromthetwora-darsmaybecombinedtocomputethetotalhorizontalcomponentofthewindTheLincolnLaboratoryJournal.Volume 2.Number3 (1989)vectoroverareaswhereradialsfromthetworadarsintersectatapproximatelyrightangles.Inaddition,therapidscanrateofanASR


View Full Document

MIT 3 11 - Wind Shear Detection

Documents in this Course
Load more
Download Wind Shear Detection
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Wind Shear Detection and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Wind Shear Detection 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?