Unformatted text preview:

Noise in Cascaded Amplifiers F1 G1 F2 G2 1 2 F1 2 3 F1 2 G1 2 1 3 S1 N1 where S3 G1G2S1 S3 N3 S N N2 kToF1G1 Recall F1 1 1 S2 N2 N3 G2kToF1G1 G2 F2 1 kTo amplified from 2 excess from 2 S3 N3 G1G2S1 G1G2F1 G2 F2 1 kTo S1 kTo F 1 F1 2 G1 S1 N1 F2 1 F1 F1 2 S3 N3 G1 L1 Noise in multiple cascade amplifiers F3 1 By extension F1 2 3 F1 2 G1G2 F2 1 F1 2 F1 G1 In general F2 1 F3 1 cascade noise formula F1 2 F1 G1G2 G1 Note A B vs B A The better choice is not obvious F1 2 also depends on interstage impedance mismatches and gain of the first amplifier not just on F1 L2 Noise in superheterodyne receivers S1 N1 S2 N2 0 fo f Gc Fc 0 fi f L O lower rf sideband f Gi f Fi f i f intermediate frequency upper sideband S2 0 S1 i f passband f fL O S2 i f 1 1 Conversion loss of mixer Lc Gc S1 r f SSB 2 Noise temperature ratio of mixer t N i f kT r S1 kTo S1 N1 3 Fmixer Lc tr S2 N2 S1 Lc tr kTo 2 o L3 Noise in superheterodyne receivers S1 kTo S1 N1 3 Fmixer Lc tr S2 N2 S1 Lc tr kTo Fi f 1 4 Fmixer i f amp Fmixer Gmixer L c tr L c Fi f 1 L c Fi f t r 1 e g Fmixer i f amp 2 8 3 9 dB L4 Basic receiver types Amplification 1 Simple detector B 2 h t vo t f OR 2 RF Amplifier OR 3 Superheterodyne N1 Basic receiver types Combinors 1 2 vo t Total power radiometer vo t Dicke radiometer vo t Multiplication correlation receiver 3 4 N L I N E A R M N way combiner N M N2 Passive Multiport Networks 1 2 beamsplitter 4 port RCVR adding interferometer 3 N detectors 3 dB hybrid 4 Zo white light diffraction grating L O cancel add in phase output N port input 4 output N3 Passive Multiport Networks 5 Magic tee 6 Frequency converter USB upper sideband 2 I F 3 4 Nonlinear noise 1 LSB lower sideband LSB Port 1 orthogonal to Port 2 Port 3 orthogonal to Port 4 All 4 ports can be matched USB f I F N4 Linear Passive N port Networks a 2 toward port i Define exchangeable power i 2 1 bi from port i W or WHz ai i bi j 2 Net power entering port i ai bi 2 Scattering matrix equation b Sa Note 1 The scattering matrix S is defined only when the n port is imbedded in a network 2 The phases of ai and bi can be defined as some linear combinations of those for voltage and current e g ai V Yo 2 V Zo I 8Zo bi V Zo I 8Zo P1 Gain definition for N port networks Transducer gain GTkj bk 2 aj 2 Skj 2 PDk PAj Exchangeable gain available gain PE 2 GE k Note available power out bk 2 kj PE aj due to possible port k mismatch j i e fractional power absorbed FPA ak 2 bk ak 2 1 Skk 2 2 But FPA fractional power emitted if reciprocity applies Therefore available power from port K bk 1 S a Therefore GE bk kj 2 kk 2 2 j 2 1 S kk Skj 2 2 1 Skk 2 GE kj P2 Constraints on N port networks N Lossless passive networks ai i 1 Reciprocity S S 2 N bi 2 i 1 t P3 Example of constrained N port networks Does an ideal power combiner exist kT1 0 0 We want S 0 0 k T1 T2 1 2 symmetry kT2 3 t t Losslessness a a b b t S a a b b Sa Therefore t t t S Sa 1 0 0 S S I 0 1 0 if the combiner is lossless 0 0 1 t P4 Example of constrained N port networks 1 0 0 Therefore S S I 0 1 0 if the container is lossless 0 0 1 0 0 0 0 S 2 2 2 t 2 Test S S 2 2 2 t 2 2 2 If 1 then 2 1 Therefore constraints 8 14 and 8 15 cannot be satisfied simultaneously for this system Ideal matched 2 input port combiners are impossible P5 Another N port network example Can we match all 3 ports simultaneously 1 3 2 Note S is defined only when imbedded in network For 3 matched ports t Does S S I 0 S 0 0 lossless passive constraint P6 Matched 3 port example 0 S 0 0 For 3 matched ports t Does S S I lossless passive constraint 2 2 t S S 2 2 I 2 2 If 0 then 2 of and at least t one diagonal element of S S 0 Therefore not possible to match all 3 ports simultaneously P7 Lossless passive reciprocal symmetric 4 port network Ports 1 2 are isolated also 3 4 1 3 2 4 We can show for 1 3 versus symmetry axis all ports matched 1 4 paths is unique using losslessness reciprocity and symmetry P8 Mixer vThsignal S t t VTh vo t Rs i t RL local oscillator diode i io VTh i v 2 for diode d v d t v sin o t v s sin s t small high order terms 2 v o t iRL v Th RL 2 k o k1v Th k 2v Th k 3 v 3Th RL RS i t load line i RL RS vd 0 diode i vTh t VTh v d VTh dominant R1 Mixer 2 v R 3 2 d L v o t iRL k o k1v Th k 2 v Th k 3 v Th dominant Spectral content of detector output Vo f 0 fif fs fo image fo fs 2fo 2fs fo fs 3fo 3fs f Pure product frequency component for pure s t t Note v 4 2fi f can be in i f passband d Normally a 4 port model suffices to find F TSSB TR signal 1 4 image 2 3 output internal noise R2 Mixer Noise Figure Using 4 port Model TR TSSB F 1 To To Lc tr 1 signal 1 4 for single sideband SSB operation image 2 3 FSBB S1 N1 S 4 N4 S S 2 1 41 2 1 S 44 output internal noise S1 kTo kT S 2 kT S 2 kT S 2 2 42 3 43 o 41 2 1 S 44 Note S signifies signal in port 1 Skj is a scattering matrix element 2 2 TSSB T3 S 43 T2 S 42 Simplifying FSSB 1 1 2 2 To To S To S 41 41 Therefore TSSB T2 S 42 2 S 41 2 T3 S 43 2 S 41 2 R3 …


View Full Document

MIT 6 661 - Noise in Cascaded Amplifiers

Download Noise in Cascaded Amplifiers
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Noise in Cascaded Amplifiers and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Noise in Cascaded Amplifiers and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?