Unformatted text preview:

Semiconductor Diode Detectors Electron energy diagram – (electrons fall downward) conduction band carrier density ED, donors → n-type (e’s conduct) EA, acceptors → p-type (holes conduct) valence band pn junction Egap ≅ 1.2 V (Si) “Fermi level” p-type n-type VEF (analogous to sea level) z C1Lec07- 1 DHS 12/27/00 open circuitConductivity of biased diodes trapped holes Egap +-E trapped electrons cannot cross junction holes Reversed-biased diode + -p-type n-type Forward-biased diode 0 i v If T = 300K, kT ≅ 26 mv electrons hf photo-excitation C2Lec07- 2 DHS 12/27/00Photodiodes Reverse current Forward biased behavior Increases with photo-excitation and T (therefore cooled photodetectors have less “dark current”) 0 0ve ~i av>−∝ -+ Quantum efficiency η≅ conduction electrons per photon if hf > Egap i RV -+ -+ hf (power = Ps) hf Piv s darko⎟ ⎠⎞⎜ ⎝⎛η += photodiode circuit i v vo C3Lec07- 3 DHS 12/27/00 for 1 0.8 – 0.95 R eAvalanche Photo Diodes, “APD” avalanche region breakdown APDs have current gain per photon i v 100 1 10 i(t) t L 0zj z cascaded ionizations produce “avalanche”photoexcitation hf collisionally excited electron E C4Lec07- 4 DHS 12/27/00Avalanche Photodiodes, “APD” 1 10 i(t) t 100 Simple model for avalanche current and noise: ioi th ei ≅ [ ]e 1dzeL 1G o L 0 ooio∆⎟⎠⎞⎜⎝⎛−=≅⎥⎦⎤ ⎢⎣⎡=∫ [] ⎥⎦⎤ ⎢⎣⎡−≅⎥⎦⎤ ⎢⎣⎡= 1e 1 o 2 oio ( )2 2 xG G ; x i l⎡ ⎤≅ ≅ = ⎢ ⎥⎣⎦ G ≅ 200 ± ~6 dB, for typical applications C5Lec07- 5 DHS 12/27/00 z g g gain has photon thickness junction L 1 L g e E L g z g z g L g2 e E g E L g2 z g2 In practice E g where x 0.25; 0.2-0.5 s typicaCarrier-to-Noise Ratio, “CNR” for photon detectors signal + shot dark + shot thermal 0 B Rd T°K i(t) RL = Rd 0°K Photodetector circuit model () [] () iand iwherei-iEtiCNR L s 22 s∆ ( ) Dsshot 2 n ii += ≅ constant for PMT ()ti ss signal power (W) E1 Only in/2 flows in RL from Rd noise (assume TL << Tdiode), ( ) dLL 2 n R2i =and L 2 niTherefore L = Lec07- 6 DHS 12/27/00 current total the is R through current signal the is t eG B2 hf eG P η = R diode to matched R since kTB R thermal R kTB4Carrier-to-Noise Ratio, “CNR” () [] () iand iwherei-iEtiCNR L s 22 s∆ ( ) Dsshot 2 n ii += ≅ constant for PMT ()ti ss signal power (W) L 2 ni L = ( ) ( )( ) ( )LDs 2 s PP CNR ++η η = for photo diodes or PMT with constant G 2 nshot i 2 nthermal i E2Lec07- 7 DHS 12/27/00 current total the is R through current signal the is t eG B2 hf eG P η = R thermal R kTB4 R kTB4 hf eG BeG2 hf eG PCNR for constant-G photodiodes, photomultipliers ( ) ( )( ) ( )LDs 2 s PP CNR ++η η = for photo diodes or PMT with constant G 2 nshot i 2 nthermal i ( )2 sLsD s eGPPP1 fPCNR η++ η = For PD = T =0, or Ps →∞; ideal quantum limit (denominator equals unity) In the quantum limit, we want large η and Ps, and small B Why not let RL →∞? Because RLC = τ sec; C = detector capacitance ≅ 10 (say) Then RL ≅ 1000 Ω for τ = 10-9 (f ≅ 150 MHz) Also, generally: D < Ps set RLG2 large to contain thermal noise E3Lec07- 8 DHS 12/27/00 R kTB4 hf eG BeG2 hf eG P R kThf2 B2 h-12 set T so PCNR for variable-G avalanche photodiodes 0 δ i(t) t gie/δ gie Assume rectangular pulses to simplify analysis ( )Ds hf PP n +η = 0 δ-δ τ ()τφ ACi hf PPe g Ds 22 +ηδ ~1/δ hf PP eg Ds22 +η ( )f ACiΦ f shot noise 0 B E4Lec07- 9 DHS 12/27/00 1-s eventsCNR for variable-G avalanche photodiodes ( ) () ( ) hfPPeii Ds 22 B B i 22 i +η=Φ= ⎥⎦ ⎤ ⎢⎣ ⎡ −=σ ∫ − Therefore CNR (APD) = 0 δ-δ τ ()τφ ACi hf PPe g Ds 22 +ηδ ~1/δ hf PP eg Ds22 +η ( )f ACiΦ f shot noise 0 B ( ) ( ) LDs 22 2 s hfPPe ++η η 2 iσ thermali2 nshot E5Lec07- 10 DHS 12/27/00 g B2 df f R kTB4 g B2 hf eG PCNR for variable-G avalanche photodiodes Therefore CNR (APD) = ( ) ( ) LDs 22 2 s hfPPe ++η η 2 iσ thermali2 n In general, to maximize APD CNR we want G2 large to make thermal noise negligible, but small so Gx is still modest; e.g. Gx ≅ 4 is typical shot ( )2 sLs D 2 2 s eGPRP P1 G g fP η +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + η = GGg x22 −≅≅Only change is E6Lec07- 11 DHS 12/27/00 R kTB4 g B2 hf eG P kThf2 B2 h(APD) CNR 5 . 0 2. 0 x ,Infrared Detection Types of electromagnetic detectors hf << kT “radio” hf >> kT “optical,” “visible,” etc. hf = kT “infrared” G1Lec07- 12 DHS 12/27/00Infrared Detection Bolometers (measure heat) -+ vout -+ RPs(W) Tbath Thermal conductance heat sink R(T) I = bias Signal power Ps raises T, changing R(T) and vo. Heat flows to heat sink and to bath; Tbath ~ ( ) TPowert 1 t ∆∆∆− donorskTd E z conduction band valence band whereR s TT o d≅ G2Lec07- 13 DHS 12/27/00 bias < 4 – 250K. WK G . P with increases Te RResponsivity S of a bolometer -+ vout -+ RPs(W) Tbath heat sink R(T) I = bias s 2 ss o PPwhereP P P RISP v += ∂ ∂ • ∂∂ =∆∂∂ ( )RRP RI11P P P RIP PThus bias 12 s 2 s >>⎟⎠⎞⎜⎝⎛ ∂∂−=+∂ ∂ ∂∂ = ∂ ∂− P T T R P RwhereP RI1P RI 2 ∂∂ • ∂∂ = ∂∂⎟⎠⎞⎜⎝⎛ ∂∂−∂∂ = ⎟ ⎠⎞⎜ ⎝⎛<< −≅⎟⎠⎞⎜⎝⎛ ∂ ∂ = 1T T TT d 2 doTT o d t = ⎟⎟ ⎠⎞ ⎜⎜ ⎝⎛ + − = 2 t d 2 2 t d 1S Td << T may not apply G3Lec07- 14 DHS 12/27/00 bias R I ty" responsivi " S Thus T R e R G 1 T G R T I T G R ITResponsivity S of a bolometer T1S d2 t d 2 2 t d <<⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + − = Thus S → 0 and thermal noise in Rbias dominates as 0 biasI → ∞→ Thus there is optimum (near maximum S)[ ]2 tdbiasI = G4Lec07- 15 DHS 12/27/00 T If T G R T I T G R IT T G R T fBolometer noise sources bias (thermal) t traditional shot noise t t• carrier creations carrier recombinations (deaths) < × 2 shot noise ~ Recombination Noise H1Lec07- 16 DHS 12/27/00 1) Can be recombination noise 2) Johnson noise in R, R3) Phonon noise via G4) Photon noise (“radiation noise”)Johnson noise …


View Full Document

MIT 6 661 - Semiconductor Diode Detectors

Download Semiconductor Diode Detectors
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Semiconductor Diode Detectors and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Semiconductor Diode Detectors 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?