Unformatted text preview:

2/6/01 Types of Communication Analog: continuous variables with noise ⇒ P{error = 0} = 0 (imperfect) Digital: decisions, discrete choices, quantized, noise ⇒ P{error} → 0 (usually perfect) The channel can be radio, optical, acoustic, a memory device (recorder), or other objects of interest as in radar, sonar, lidar, or other scientific observations. A1 Message S1, S2,…or SM Modulator ⇒ v(t) channel; adds noise and distortion M-ary messages, where M can be infinite Demodulator; hypothesize H1…HN (chooses one) message S1, S2,…or SM Lec14.10-1 Received2/6/01 Optimum Demodulator for Binary Messages P2OKERRORS2 P1ERROROKS1 H2H1 Probability a prioriHypothesis: Message: A2 How to define V1,V2? Demodulator design V1 V2 vb va 2-D case E.G. "Vv "Vv 22 11 ⇒∈ ⇒∈ vb va vc v t Lec14.10-2 measured v H " H "2/6/01 Optimum Demodulator for Binary Messages va How to define V1,V2? V1 V2 vb va 2-D case E.G. "Vv "Vv 22 11 ⇒∈ ⇒∈ vb vc v t Minimize { } { }2 1e 1 1 2 2V VP P P S P S∆ = = +∫ ∫ { } { }11 2 2 1 1VP S S= + −⎡ ⎤⎣ ⎦∫ { } { } 1 21 V 1V 1 =+ ∫∫Note: replace with ∫ 1V A3 Lec14.10-3 measured v H " H " error p v dv p v dv P pv P pv dv vd S v p vd S v p2/6/01 Optimum Demodulator for Binary Messages { } { }[ ]∫ −+= 1V 11221e dvPP A4 { } { }1 1 1 2 2i i , S S∋ > Very general solution ↑ [i.e., choose maximum a posteriori Lec14.10-4 S v p P S v p P error To m nim ze P choose V P p v P p v P (“MAP” estimate)]2/6/01 Example: Binary Scalar Signal Case A5 S 2 n21 ∆∆∆ =σ== { } 2)Av(1 e 1 −− π =∴ { }2 e 1 − π = :P21 = { }2p { }1p 0 AA/2 Decision threshold if 21 PP = 1P2P v 1P 2P 0 AA/2 v 2H 21 PP >Threshold if { }p v S(bias choise toward H2 and a priori information) Lec14.10-5 noise Gaussian , N , volts O S , volts A N2 N 2 S v p N2 v N 2 S v p P If S v S v2/6/01 Rule For Defining V1 : (Binary Scalar Case) A6 { } { } " P P 1 1 2 2 1 ⇒>= ∆A ( ) "Pn 112 ⇒> AAA (binary case) “Likelihood ratio” or (equivalently) For additive Gaussian noise, ( )[ ] ( ) ( )12 ?222 PAv-n AAA >−=+= ( ) ( ) 2 21 1 2 1 A P ANV i , P2A 2 A +∴ > > +A A   { } { }1 1 1 2 2S S∋ > { } 22 1 pv S e 2N −= π Lec14.10-6 " V S v p S v p " V P n P n N2 vA 2 N2 N2 A -v bias 2N n P choose f v or v n P   Choose V P p v P p v v2N2/6/01 Binary Vector Signal Case For better performance, use multiple independent samples: { } { } 1 2? 2 1 P P p p >= ∆A 2S { } { } m 12 m 1 i 1i1 S S = =π (independent noise samples) { } ( )Sv ii 2 i1ie 1 −− π =Where { } ( ) ( )m 2i 1ii1 vSi m 1p v S e 2N = − −∑ = π B1 v(t) 0 t 1S 12 m Lec14.10-7 S v S v Here P v ,v ,...,v p v N2 N 2 S v p 2N2/6/01 Binary Vector Signal Case B2 { } ( ) ( )Sv mi m 1i 2 i1i e 1 p ∑ −− − π = Thus the test becomes: ( ) ( )i i m m ?2 2 2i 2 i 1 1i1 i1 P1n v S v S n2N P = = ⎡ ⎤ = − − − >⎢ ⎥ ⎣ ⎦ ∑ ∑AA A 2 2Sv − 2 1Sv − 2 2 2 1 2 1 2 2 1 1But v S v S 2v S S S S S S− − − • + • + • − • ( ) 1 1 2 2 21 21 1 PS S S Sv V i v S S N n2 P ∗ ∗ • − • ⎛ ⎞∈ • − > + ⎜ ⎟⎝ ⎠ ATherefore if energy E1 = E2 if P2 = P1 { } { } ?1 2 12 pv S P = Ppv S ∆ >A Lec14.10-8 N2 N 2 S v 2v =− ff Bias = 0 Bias = 02/6/01 Binary Vector Signal Case B3 Multiple hypothesis generalization: This “matched filter” receiver minimizes Perror ?i iii i i j i SSH if f v S N n P all f2 ∆ ≠ • = • − + >A ∑τ m ∑τ m operator H1 H2 + -× × 1S 2S v i=1 i=1 ( ) 1 1 2 2 21 1 21 1 PSS S SS S N n2 P • − • ⎛ ⎞• − > + ⎜ ⎟⎝ ⎠ A Lec14.10-9 Choose V iff v2/6/01 Graphical Representation of Received Signals B4 2 2 i i i1 AS P = =∑ )t(1S 11S 12S 13S t 3-D Case: n n 1S 2S 0 1V 2V Lec14.10-10 verage energy2/6/01 Design of Signals iS 1ESenergyAverage 2 == B5 E.G. consider +1 -1 vs. 21 SS −= 2S 2S1 += 0S2 = ( ) 21 PE == 0 1S 2S 3S 4S boundaries b n E.G. 2-D space ( ) 12111 4321 SS : = ( ) 1312111 SS = 3-D space 1S 2S 3S4S a b ratio a bBetter Lec14.10-11 P 2 decision S , S , S , S , S for S , S ,2/6/01 Design of Signals iS B6 2-D space: 16-ary signals 161 or magnitude/phase vs 2iS 1iS n-Dimensional sphere packing optimization unsolved equilateral triangle slightly lower average p{error} 19 Lec14.10-12 S ,..., S signal energy for same2/6/01 :eP∆ = Binary case: For additive Gaussian noise, optimum is ( ) 1 2 2 2 2 1 211 P P nN2 SSSSvif A+ − >−• nSvWhere += )t(nN so 2 === ∆ [ ]( )No × ( ) ⎪⎭ ⎪⎬ ⎫ ⎪⎩ ⎪⎨ ⎧ + − <−•= 1 2 2 2 2 1 21 P P nN2 SS SSP 1 A ( ) { } 2 1 2 21 2 1 S S P pn S S N n b2 P ⎧ ⎫− −⎪ ⎪ = • − < + =⎨ ⎬ ⎪ ⎪⎩ ⎭ A D1 Lec14.10-13 p{error} of n Calculatio " H " B kT B N sideband double ,B2 Hz W 2 1-S e v p p y <− y • 2B[GRVZM] -b • 2BLec14.10-14 2/6/01 Duality of Continuous and Sampled Signals ( ) [ ] { } bypP P nN2 SSSSnpP B2b 1 2 2 21 GRVZMB2y 21Se 1 − <= ⎪ ⎪ ⎭ ⎪ ⎪⎬ ⎫ ⎪ ⎪ ⎩ ⎪ …


View Full Document

MIT 6 661 - Types of Communication

Download Types of Communication
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Types of Communication and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Types of Communication 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?