Unformatted text preview:

Biology 311 Human Genetics Fall 2004Lecture: Gene TherapyReadings: Mountain, A. (2000) Gene therapy: the first decade. TIBTECH 18, 119-128.Wu, N. and Ataai, M. M. (2000) Production of viral vectors for gene therapy applications. Current opinion in biotechnology 11, 205-208.Chapter 21 pp. 616-629Presentation:Presentation on gene therapy by Nicholas Simon Spring 2004, Biology of CancerOutline: 1. Gene therapy strategies2. Disease targets3. Gene therapy vectorsa. virusesb. non-viral 4. Future prospectsLecture:1. Gene therapy strategiesGene therapy= The treatment or prevention of disease by gene transfer. Two major approaches:a. Gene addition (supplementation): Introduction of a new copy of a gene to supplement an existing copy. Gene therapy protocols in clinical trials all use this strategy.b. Gene replacement: Correction or replacement of a defective gene by a functioning gene. Technically much more difficult. Other strategies are shown in Fig. 21.42. Disease targets Existing therapies are directed at somatic cells, not germ line (gamete) cells. Cancer cells are a major target; most gene therapies for cancer introduce versions of the tumor suppressor gene p53 in order to restore normal cell control. Some diseases caused by single gene defects (monogenic diseases) are targets for gene therapy. For example, cystic fibrosis.  Some infectious diseases are being treated with gene therapy approaches. Some genetic diseases are not readily approachable with gene therapies yet due to the large size of the gene (muscular dystrophy) or inability of the vectors to direct the gene to the correct location. Drug and therapeutic testing: Clinical trialsPhase I: Small trials of 10-15 individuals to determine toxicity of a treatment.Phase II: Small trials of 10-50 individuals to determine toxicity, to test possible dosages or delivery methods, and to obtain preliminary results on effectiveness.Phase III: Large trials of several hundred to a thousand individuals to determine whether a treatment strategy is safe and effective. A successful trial provides results that lead to approval of drugs or more widespread applications of new therapies.3. Gene therapy vectorsa. virusesAdenovirus:  Human virus, causes respiratory tract illness Double stranded DNA virus of 36 kb Can be grown to high titer Can infect a variety of cell types Infection can trigger an adverse immune response Size limit of introduced gene about 7.5 kb Most successful vector so far for human gene therapies Most useful versions are gutted, removing viral genes that trigger the immune response, but require growth in presence of helper virus Short duration of expressionAdeno-associated virus (AAV): Human virus, not toxic to infected cells, doesn't trigger an immune response A single-stranded DNA virus with genome 4680 bases long Replication requires functions of a helper virus such as adenovirus or herpes simplex Can infect both dividing and non-dividing cells Can only carry about a 4.5 kb gene Low production yield New generation vectors engineer helper functions on other plasmids or virusesRetroviral vectors: Most are based on a mouse leukemia virus (MMLV=Moloney murine leukemia virus) Only infect actively dividing cells; especially useful for tumor therapy Single stranded RNA virus, DNA copy integrates into host genome Size limit 8 kb Vector replication and packaging functions are provided by engineered cellline Problems: Recovery of replication competent retrovirus and low titerLentivirus (HIV) vectors: HIV causes lethal disease, safety concerns a disadvantage Single-stranded RNA virus, DNA copy integrates into host genome Infect proliferating and non-proliferating cells Can infect blood-forming (hematopoietic) stem cells Size limit of 8 kbHerpes simplex virus: HSV causes many different diseases in humans, cytotoxic Double stranded DNA virus 150 kb viral genome with 80 viral genes Capacity as a vector is about 30 kb Can infect a wide range of cells, including neurons Does not insert its DNA into host genomeb. non-viral  Low immunogenicity; safe Easy to manufacture and store Inefficient transfection and short duration of expressionNaked DNA Works well for muscle, heart, skin DNA vaccinations can induce immune response against encoded antigens Not suitable for targeted therapies New methods allow injection into tissues without needles: "gene gun" or IntrajectCationic lipids or polymers Positively charged molecules that bind to negatively charged DNA Protect DNA from degradation Can be used to transfect cells in lung in cystic fibrosis treatments Poor targeting Inactivated in the bloodRNA-based therapies Antisense oligonucleotides Ribozyme (RNA enzymes) RNAi4. Future prospectsGreatest limitations of current technologies: Small capacity of available vectors Targeting of vectors to particular cells or tissues Safety, especially cytotoxicity or immunogenicity—Death of Jesse Gelsinger in 1999 in gene therapy trial with adenoviral vector for ornithine transcarbamylase deficiency Need repeated doses for many of the types of gene therapy—in early trial,one dose of adenovirus gene therapy for cystic fibrosis only lasted 2-4 weeks. Most strategies not widely applicable to many genesPromising gene therapy concepts: Direct killing of tumor cells with genes delivered by Ad vectors. Ad vectorsmay be most applicable for short term expression. Delivery of naked DNA for preventative vaccination against infectious diseases. Naked DNA delivery of genes for cardiovascular disorders. AAV delivery for chronic single gene disorders such as hemophilia.Human hereditary diseases:SCID (severe combined immunodeficiency)ADA 1990 Retroviral vector used to deliver adenosine deaminase gene to T-lymphocytes of affected child Used with an enzyme therapy—how much of improvement due to gene therapy?X-linked SCID 2000 Retroviral vector Deliver portion of the cytokine receptor gene IL2R 9/11 patients were cured Complications: 2/11 patients developed leukemia, most likely due to insertional activation of oncogeneCystic Fibrosis Only 5-10% of normal CFTR levels needed to see improvement 18 different clinical trials of therapies initial therapies used adenovirus—concern about immune response recent trials used liposomes or


View Full Document

Oneonta BIOL 311 - Gene Therapy

Download Gene Therapy
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Gene Therapy and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Gene Therapy 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?