DOC PREVIEW
TAMU BICH 407 - An Outlook on Microalgal Biofuels

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

6. A. Uslu, A. P. C. Faaij, P. C. A. Bergman, Energy 33,1206(2008).7. M. Laser et al., Biofuels Bioprod. Bioref. 3,247(2009).8. R. C. Brown, Biorenewable Resources: Engineering NewProducts from Agriculture (Blackwell, Boston, 2003).9. J. R. Hess, C. T. Wright, K. L. Kenney, Biofuels Bioprod.Bioref. 1,181(2007).10. K. J. Shinners, G. C. Boettcher, R. E. Muck, P. J. Weimer,M. D. Casler, Trans. ASABE 53,359(2010).11. World Agricultural Outlook Board, May 2010 Report(Office of the Chief Economist, USDA, Washington, DC,2010).12. U.S. Energy Information Administration, InternationalEnergy Outlook 2010—Highlights (DOE/EIA-0484,U.S. Department of Energy, Washington, DC, 2010).13. A. Aden et al., Lignocellulosic Biomass to Ethanol ProcessDesign and Economics Utilizing Co-Current Dilute AcidPrehydrolysis and Enzymatic Hydrolysis for Corn Stover(NREL/TP-510-32438, National Renewable EnergyLaboratory, Golden, CO, 2002).14. S. Phillips, A. Aden, J. Jechura, D. Dayton, T. Eggeman,Thermochemical Ethanol via Indirect Gasification andMixed Alcohol Synthesis of Lignocellulosic Biomass(NREL Technical Report TP-510-41168, NationalRenewable Energy Laboratory, Golden, CO, 2007).15. A. Kumar, J. B. Cameron, P. C. Flynn, Appl. Biochem.Biotechnol. 113, 27 (2004).16. H. Mahmudi, P. C. Flynn, Appl. Biochem. Biotechnol.129, 88 (2006).17. E. Searcy, P. C. Flynn, E. Ghafoori, A. Kumar,Appl. Biochem. Biotechnol. 137–140,639(2007).18. A. P. C. Faaij, Mitig. Adapt. Strategies Glob. Change11,335(2006).19. G. W. Huber, A. Corma, Angew. Chem. Int. Ed. 46,7184(2007).20. G. Berndes, J. Hansson, A. Egeskog, F. Johnsson, BiomassBioenergy 34,227(2010).21. A. Kumar, J. B. Cameron, P. C. Flynn, Bioresour. Technol.96,819(2005).22. H. Ren et al., Biotechnol. Prog. 22, 78 (2006).23. A. Eisentraut, Sustainable Production of Second-GenerationBiofuels: Potential and Perspectives in Major Economies andDeveloping Countries (International Energy Agency, Paris,2010).24. A. Kumar, J. Cameron, P. C. Flynn, Biomass Bioenergy24,445(2003).25. L. D. Mapemba, F. M. Epplin, R. L. Huhnke,C. M. Taliaferro, Biomass Bioenergy 32,1016(2008).26. P. P. Ravula, R. D. Grisso, J. S. Cundiff, Bioresour.Technol. 99,5710(2008).27. F. Magelli, K. Boucher, H. T. Bi, S. Melin, A. Bonoli,Biomass Bioenergy 33,434(2009).28. D. Alfonso et al., Biomass Bioenergy 33,1070(2009).29. J. Singh, B. S. Panesar, S. K. Sharma, Biomass Bioenergy34,483(2010).30. S. Sokhansanj, S. Mani, S. Tagore, A. F. Turhollow,Biomass Bioenergy 34, 75 (2010).31. M. Gronalt, P. Rauch, Biomass Bioenergy 31,393(2007).32. D. B. Blackwelder, E. Wilkerson, Supply System Costs ofSlash, Forest Thinnings, and Commercial Energy WoodCrops (Technical Report INL/MIS-09-15228, U.S. DOEIdaho National Lab, Idaho Falls, ID, 2008).33. S. Sokhansanj, A. F. Turhollow, Appl. Eng. Agric. 20,495(2004).34. L. Eriksson, L. Gustavsson, Biomass Bioenergy 34,82(2010).35. J. E. Carolan, S. V. Joshi, B. E. Dale, J. Agric. Food Indust.Org. 5, 10 (2007).36. National Academy of Sciences, National Academy ofEngineering, National Research Council, LiquidTransportation Fuels from Coal and Biomass:Technological Status, Costs, and Environmental Impacts(National Academy of Sciences, Washington, DC, 2009).37. E. Alakangas, J. Valtanen, J.-E. Levlin, Biomass Bioenergy30,908(2006).38. M. Kaltschmitt, M. Weber, Biomass Bioenergy 30,897(2006).39. M. Lenox, J. Nash, Bus. Strategy Environ. 12,343(2003).40. I. Lewandowski, A. P. C. Faaij, Biomass Bioenergy 30,83(2006).41. J. van Dam et al., Biomass Bioenergy 32,749(2008).42. I thank C. Taylor, K. Ruamsook, E. Thomchick,and C. Hinrichs for providing helpful comments andsources.10.1126/science.1189139PERSPECTIVEAn Outlook on Microalgal BiofuelsRené H. Wijffels1and Maria J. Barbosa2Microalgae are considered one of the most promising feedstocks for biofuels. The productivityof these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only astep or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competingfor arable land. Worldwide, research and demonstration programs are being carried out to develop thetechnology needed to expand algal lipid production from a craft to a major industrial process. Althoughmicroalgae are not yet produced at large scale for bulk applications, recent advances—particularly inthe methods of systems biology, genetic engineering, and biorefining—present opportunities todevelo p this pr oc ess in a susta in abl e and econ omi ca l way wit hin t he nex t 10 to 15 years .The concept of using algae to make fuelswas already being discussed 50 years ago(1), but a concerted effort began with theoil crisis in the 1970s. Large research programsin Ja p an a nd t he U ni te d Stat es f ocu se d on d ev el -oping microalgal energy production systems. From1978 to 1996, the U.S. Department of Energy’sOffice o f Fuels Develop ment funded a program todevelop renewable transportation fuels from algae(2). The main focus of the program, known as theAquatic Species Program (ASP), was the produc-tion of biodies el from high-l ipid- content alg aegrown in po nds, using waste CO2from coal-firedpower plants. In Jap an, the government financedalargeresearchprojectentitled“Biological CO2Fixation and Utilization” from 1990 to 1999 (3).These programs yielded some successes—such aspromising lipid production strains, open produc-tion systems (raceway ponds), and principles forphotob io r ea ct or design (the use of fiber optics tobring light inside the systems)—that are still thefocus of research today, but none has proveneconomical on a large scale.There have been several critical issues thatcombined have had a large influence on stim-ulating the resurgence of algal biofuels research.The wo r l d has exp er i e nc e d rec or d cru d e oil p r i c e s,increasing energy demand, and environmentalconcerns that have pushed biofuels research ingeneral to the fore. In the narrower context of1Wageningen University, Bioprocess Engineering, Post Office Box8129, 6700 EV Wageningen, Netherlands.2Wageningen Uni-versity and Research Center, Food and Biobased Research, PostOffice Box 17, 6700 AA Wageningen, Netherlands. E-mail:rene.wijff [email protected] l (R.H.W.); maria.barbosa@wu r.nl (M.J.B.)Imax: 1800 µmol photons m-2 s-1Imax: 400 µmol photons m-2 s-1(direct sunlight)(diluting effect)Fig. 1. The principle of light dilution. The light intensity (I)strikingcloselyspacedverticalpanelsismuchlower than the intensity


View Full Document

TAMU BICH 407 - An Outlook on Microalgal Biofuels

Download An Outlook on Microalgal Biofuels
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view An Outlook on Microalgal Biofuels and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view An Outlook on Microalgal Biofuels 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?