DOC PREVIEW
MIT 2 008 - Lecture Notes

This preview shows page 1-2-3-26-27-28 out of 28 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

2.008-spring-2005 S.G. Kim 12.008 Design & Manufacturing IISpring 2005Sang-Gook KimMEMS/Nano I2.008-spring-2005 S.G. Kim 2Nano/Micro in ME My Office: 1-310, [email protected], MEMS/Nanomanufacturing Small is not small enough?2.008-spring-2005 S.G. Kim 3Nano/Micro in ME Fluidics, heat transfer and energy conversion at the micro- and nanoscale Bio-micro-electromechanical systems (bio-MEMS) Optical-micro-electromechanical systems (optical-MEMS) Engineered nanomaterials Nano-Manufacturing Course 2A (Nanotrack) Micro/Nano Group in MEhttp://web.mit.edu/nanomicro/Index.html2.008-spring-2005 S.G. Kim 4Moore’s LawYear of introduction Transistors4004 1971 2,2508008 1972 2,5008080 1974 5,0008086 1978 29,000286 1982 120,000386™ 1985 275,000486™ DX 1989 1,180,000Pentium® 1993 3,100,000Pentium II 1997 7,500,000Pentium III 1999 24,000,000Pentium 4 2000 42,000,000The number of transistors per chip doubles every 18 months. – Moore’s Law2.008-spring-2005 S.G. Kim 5Why shrink things? Use less materials, energy, power Faster response, better sensitivity, simpler, better accuracy reliability Performance/$ Minimally invasive . .2.008-spring-2005 S.G. Kim 6Why shrink things? Shock and impact Scale and form factor Load carrying capability Spider silk v.s. steel2.008-spring-2005 S.G. Kim 7Frog, Water Strider, Gecko2.008-spring-2005 S.G. Kim 8Learn from the nature, but never try to mimic the nature.Biomimetic researches.K. Autumn, www.lclark.eduDNA~2-1/2 nm diameterThings Natural Things ManmadeMicroElectroMechanical devices10 -100 µm wideRed blood cellsPollen grainFly ash~ 10-20 µmAtoms of siliconspacing ~tenths of nmHead of a pin1-2 mmQuantum corral of 48 iron atoms on copper surfacepositioned one at a time with an STM tipCorral diameter 14 nmHuman hair~ 10-50 µm wideRed blood cellswith white cell~ 2-5 µmAnt~ 5 mmThe Scale of Things -- Nanometers and MoreDust mite200 µmATP synthase~10 nm diameterNanotube electrodeCarbon nanotube~2 nm diameterNanotube transistorOOOOOOOOO OOOOOSOSOSOSOSOSOSOSPOO21stCentury ChallengeCombine nanoscale building blocks to make novel functional devices, e.g., a photosynthetic reaction center with integral semiconductor storageThe Microworld0.1 nm1 nanometer (nm)0.01 µm10 nm0.1 µm100 nm1 micrometer (µm)0.01 mm10 µm0.1 mm100 µm1 millimeter (mm)1 cm10 mm10-2m10-3m10-4m10-5m10-6m10-7m10-8m10-9m10-10mVisibleThe Nanoworld1,000 nanometers = InfraredUltraviolet MicrowaveSoft x-ray1,000,000 nanometers = Zone plate x-ray “lens”Outermost ring spacing~35 nmOffice of Basic Energy SciencesOffice of Science, U.S. DOEVersion 03-05-02DOE 20012.008-spring-2005 S.G. Kim 10Micro to Nano 20thCentury - Microelectronics and Information Technology Semiconductors, computers, and telecommunication 21stCentury - Limits of Microsystems Technology--- Nanotechnology Moore’s law Hard disc driveJohn Bardeen, Walter Brattain, and William Shockleyat Bell Laboratories, “First Transistor”2.008-spring-2005 S.G. Kim 11Limit of Optical LithographyW = kλ/NA(Rayleigh Eqn.)  In 1975, 405 nm (Hg H-line) at an NA of 0.32, a line width of 10 µm  deep-UV (248-nm), 193 nm, 157nm Table 1: Wavelength "Generations"Intel Road MapYearNode Lithography1981 2000nm i/g-line Steppers1984 1500nm i/g-line Steppers1987 1000nm i/g-line Steppers1990 800nm i/g-line Steppers1993 500nm i/g-line Steppers1995 350nm i-line -> DUV1997 250nm DUV1999 180nm DUV2001 130nm DUV2003 90nm 193nm2005 65nm 193nm -> 157nm2007 45nm 157nm -> EUV2009 32nm and below EUV193 nm immersionlithography Nanoimprinting Soft Lithography Dip Pen Lithography SPM-based patterning2.008-spring-2005 S.G. Kim 12Immersion LithographysubstratephotoresistUV LightmaskExposureDevelopingAir, n=1Water, n=1.47W = k λ/NA (Rayleigh Eqn.)NA= n sin α193nm, sin a ~0.93, k1~0.25W in Air? Immersion?2.008-spring-2005 S.G. Kim 13Aerial density, hard disk Superparamagnetic Effect“a point where the data bearing particles are so small that random atomic level vibrations present in all materials at room temperature can cause the bits to spontaneously flip their magnetic orientation, effectively erasing the recorded data. “2.008-spring-2005 S.G. Kim 14MEMS (Microelectromechanical Systems) Intergrated systems of sensing, actuation, communication, control, power, and computing Tiny, Cheaper, Less power, material.. New functions!!! (chemical, bio, µ-fluidic, optical, …)2.008-spring-2005 S.G. Kim 15MEMSMEMS MEMSTechnologiesOptical MEMSRF MEMSRF MEMSData StorageBio. MEMSPower MEMSMEMS for ConsumerElectronicsMEMS In SpaceMEMS for Nano.Courtesy: Sandia national laboratoryMaterialsProcessesSystemshttp://www.memsnet.org/mems/what-is.html2.008-spring-2005 S.G. Kim 16History of MEMSY.C.Tai, Caltech2.008-spring-2005 S.G. Kim 17Tiny Products Airbag sensors: Mechanical vs. MEMS DLP (Digital Micromirror Array) DNA chip Optical MEMS2.008-spring-2005 S.G. Kim 18Tiny Products Airbag sensors: Mechanical vs. MEMS2.008-spring-2005 S.G. Kim 19Tiny Products DLP (Digital Micromirror Array)DLP106micromirrors, each 16µm2, ±10° tilt(Hornbeck, Texas Instruments DMD, 1990)TM2.008-spring-2005 S.G. Kim 20Segway-Tilt-Rotation2.008-spring-2005 S.G. Kim 21Vibrating GyroscopeBy Charles Stark Draper LaboratoryBy Charles Stark Draper LaboratoryxzyCoriolisAcceleration2.008-spring-2005 S.G. Kim 22substratemagnetic layerEM coilconductive substrateconductive layerinsulatorsubstratepatterned resistive layerForceForceForceApplyCurrentApplyVoltageActuation of MEMS devicesElectrostatic actuationThermal ActuationElectromagnetic forceApplyCurrentsubstratepatterned resistive layerForcePiezoelectric ActuationApplyCurrent2.008-spring-2005 S.G. Kim 23Electrostatic Comb Drive/sensing Paralle Plate Capacitor Capacitance=Q/V=ε A/dε Dielectric permittivity of air Electrostatic Force = ½ ε (A/d2).V2 Pull-in point: 2/3 ddK2.008-spring-2005 S.G. Kim 24Comb Drive C= ε A/d = 2n ε l h/d ∆C = 2n ε∆l h/d Electrostatic force Fel= ½ dC/dxV2 = n ε h/d V2∆ldVxl2.008-spring-2005 S.G. Kim 25Suspension mode failuresxyx2.008-spring-2005 S.G. Kim 26Comb Drive DesignsDC BiasAC Signal(180° phase shift)AC SignalGrating beamsFlexuresElectrostatic comb-driveslinearrotational2.008-spring-2005 S.G. Kim 27ADXL 50 accelerometerCapacitive sensingComb drive2.008-spring-2005 S.G. Kim 28Swing Analyzer


View Full Document

MIT 2 008 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?