DOC PREVIEW
MIT 2 008 - Metal Cutting

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

12.008-spring-2004 S.Kim 12.008 Design & Manufacturing IISpring 2004Metal Cutting II2.008-spring-2004 S.Kim2Cutting processes Objectives Product quality: surface, tolerance Productivity: MRR , Tool wear Physics of cutting Mechanics Force, power Tool materials Design for manufacturing 2.008-spring-2004 S.Kim3Orthogonal cutting in a latheRake angleShear angleTo: depth of cutShear planeAssume a hollow shaft2.008-spring-2004 S.Kim4Velocity diagram in cutting zone()() ()φsincVαcossVαφcosV==−()()αφcosφsinrctotVcV−===()()αφcosφVsincV−=()()αφcosφsinrctotVcV−===Cutting ratio: r <12.008-spring-2004 S.Kim5E. Merchant’s cutting diagramαφRFtFcFnFsFNαβSource: KalpajkianFtFcβ−α2.008-spring-2004 S.Kim6() ()α)βRcos(φφsintFφcoscFsF −+=⋅−⋅=() ()φcostFφsincFnF ⋅+⋅=()βsinRF ⋅=()βcosRN ⋅=()βtanµ =AngleFrictionβ =2µ0.5:Typcially <<FBD of Forces()()αtantFcFαtancFtFNFµ⋅−⋅+==()α-βsinRFt ⋅=()α-βcosRFc ⋅=22.008-spring-2004 S.Kim7Analysis of shear strain What does this mean: Low shear angle = large shear strain Merchant’s assumption: Shear angle adjusts to minimize cutting force or max. shear stress Can derive:2β2α45φo−+=()αφtancotφaccdbcγ −+=+=2.008-spring-2004 S.Kim8Shear Angle2β2α45φo−+=FsFcφwsinφAFsAsFsτ ==σsAsFs ⋅=() ()α)βRcos(φφsintFφcoscFsF −+=⋅−⋅=()α-βcosRFc ⋅=Maximize shearstressMinimize Fc0ddτ=ϕ0ddFc=ϕ2.008-spring-2004 S.Kim9PowerssVF ⋅:shearingfor Power VFc⋅:inputPower cVF ⋅:friction viadissipatedPower VtwVFuosss⋅⋅⋅=:shearingfor energy SpecificVtwVFuocf⋅⋅⋅=:frictionfor energy SpecificVtwVFVtwVFuuossocfs⋅⋅⋅+⋅⋅⋅=+:energy specific TotalMRR=> shearing + frictionExperimantal dataMRR (Material Removal Rate) = w.to.V2.008-spring-2004 S.KimKalpakjian 10Cutting zone picturescontinuous secondary shear BUEserrated discontinuous2.008-spring-2004 S.Kim11Chip breaker- Stop and go- millingContinuous chip: bad for automation2.008-spring-2004 S.Kim12Cutting zone distributionHardness Temperature770500316Mean temperature: CVafbHSS: a=0.5, b=0.37532.008-spring-2004 S.Kim13Built up edge What is it? Why can it be a good thing? Why is it a bad thing? Thin BUE How to avoid it…•Increasing cutting speed•Decreasing feed rate•Increasing rake angle•Reducing friction (by applying cutting fluid)2.008-spring-2004 S.Kim14ToolsHSS (1-2 hours)Inserts-High T-High σ-Friction-Sliding on cut surface2.008-spring-2004 S.Kim15Source: KalpajkianTool wear up closeCrater wearDepth of cut lineFlank wearWear land2.008-spring-2004 S.Kim16Source: KalpajkianTaylor’s tool wear relationship (flank wear)CTVn=⋅) fpm ( velocity cuttingV =(min) failure totimeT =F. W. Taylor, 1907Workpiece hardnessfpmCTVn=⋅⋅⋅yxfdrate feedfcut of depthd==41-77fdVCT−−⋅⋅⋅=Ex.Optimum for max MRR?2.008-spring-2004 S.KimKalpakjian 17Taylor’s tool life curves (Experimental) Coefficient nvaries from:SteelsCeramics0.1 0.7 As nincreases, cutting speed can be increased with less wear. Given that, n=0.5, C=400, if the V reduced 50%, calculate the increase of tool life?Log scale2.008-spring-2004 S.Kim18Source: KalpajkianWhat are good tool materials? Hardness wear temperature Toughness fracture42.008-spring-2004 S.KimSandvik Coromant, Kalpakjian 19History of tool materialsTrade off: Hardness vs Toughnesswear vs chipping2.008-spring-2004 S.Kim20HSS High-speed steel, early 1900 Good wear resistance, fracture resistance, not so expensive Suitable for low K machines with vibration and chatter, why? M-series (Molybdenum) Mb (about 10%), Cr, Vd, W, Co Less expensive than T-series Higher abrasion resistance T-series (Tungsten 12-18%) Most common tool material but not good hot hardness2.008-spring-2004 S.Kim21Carbides Hot hardness, high modulus, thermal stability Inserts Tungsten Carbide (WC) (WC + Co) particles (1-5 µ) sintered WC for strength, hardness, wear resistance Co for toughness Titanium Carbide (TiC) Higher wear resistance, less toughness For hard materials Uncoated or coated for high-speed machining TiN, TiC, TiCN, Al2O3 Diamond like coating CrC, ZrN, HfN2.008-spring-2004 S.Kim22Crater wear Diffusion is dominant for crater wear A strong function of temperature Chemical affinity between tool and workpiece Coating?Crater wear2.008-spring-2004 S.Kim23Multi-phase coatingTiN low frictionAl2O3 thermal stabilityTiCN wear resistanceCarbide substratehardness and rigidityCustom designed coating for heavy duty, high speed, interrupted, etc.2.008-spring-2004 S.Kim24Ceramics and CBN Aluminum oxide, hardness, high abrasion resistance, hot hardness, low BUE Lacking toughness (add ZrO2, TiC), thermal shock Cold pressed and hot sintered Cermets (ceramic + metal) Al2O3 70%, TiC 30%, brittleness, $$$ Cubic Boron Nitride (CBN) 2ndhardest material brittle Polycrystalline Diamond52.008-spring-2004 S.Kim25Range of applicationsVfHighHigh2.008-spring-2004 S.Kim26Chatter Severe vibration between tool and the workpiece, noisy. In general, self-excited vibration (regenerative) Acoustic detection or force measurements Cutting parameter control, active control2.008-spring-2004 S.Kim27Turning parameters MRR = π Davg. N. d . f N: rotational speed (rpm), f: feed (in/rev), d: depth of cut (in) l; length of cut (in) Cutting time, t = l / f N Torque = Fc (Davg/2) Power = Torque. Ω 1 hp=396000 in.lbf/min = 550 ft.lbf/secExample 6 inch long and 0.5 in diameter stainless steel is turned to 0.48 in diameter. N=400 rpm, tool in traveling 8 in/min, specific energy=4 w.s/mm2=1.47 hp.min/in3 Find cutting speed, MRR, cutting time, power, cutting force.2.008-spring-2004 S.Kim28Sol. Davg=(0.5+0.48)/2= 0.49 in V=π. 0.49.400 = 615 in/min d=(0.5-0.48)/2=0.01 in F=8/400=0.02 in/rev MRR=V.f.d=0.123 in3/min Time to cut=6/8=0.75 minP=1.47 x 0.123 = 0.181 hp=Torque x ω1hp=396000 in-lb/minT=P/ω=Fc. (Davg/2)Then, Fc=118 lbs2.008-spring-2004 S.Kim29Drilling parameters MRR: Power: specific energy x MRR Torque: Power/ω A hole in a block of magnesium alloy, 10 mm drill bit, feed 0.2 mm/rev, N=800 rpm Specific power 0.5 W.s/mm2 MRR TorqueNf4 DπMRR2⋅⎟⎠⎞⎜⎝⎛=2.008-spring-2004 S.Kim30Sol MRR=π (10x10/4 ) . 0.2 . 800 =210 mm3/s Power= 0.5


View Full Document

MIT 2 008 - Metal Cutting

Download Metal Cutting
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Metal Cutting and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Metal Cutting 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?