DOC PREVIEW
UH ECE 6345 - ECE 6345 Notes 24

This preview shows page 1-2-21-22 out of 22 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 22 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Spring 2011Notes 24ECE 6345Prof. David R. JacksonECE Dept.2OverviewIn this set of notes we derive the SDI formulation using a more mathematical, but general, approach (we directly Fourier transform Maxwell’s equations).This allows for all possible types of sources to be treated in one derivation.3General SDI MethodˆitH J j Ezz     ˆˆtxyxy     ˆˆˆˆˆt x yxyttx jk y jkj x k ykjkjk u      whereStart with Ampere’s law:Assume a 2D spatial transform:4General SDI Method (cont.)Hence we haveˆˆitjk u z H J j Ez    ˆˆˆˆˆˆˆˆˆu v zz u vz v u       ˆˆˆˆ ˆ ˆ ˆˆˆu v zH u H v H zHu H u v H v z H z        Note thatTake the components of the transformed Ampere’s equationˆˆˆ,,z u vNext, represent the field as5Examine TMzfield:ˆˆˆit v z zivuuiut z v vz jk H J j EHu J j EzHv jk H J j Ez       ,,u v zE H EIgnore equationˆvit v z zivuujk H J j EHJ j Ez    (2)(1)General SDI Method (cont.)6TMzFieldsWe wish to eliminate . To do this, use Faraday’s law:zEˆˆiitE M j Hjk u z E M j Hz        Take the component of the transformed Faraday’s Law:ˆviut z v vEjk E M j Hz   (3)7Substitute from (1) into (3) to obtainPutting all the sources on the RHS:zE 1iiut z t v v vEjk J jk H M j Hjz     2iiu t tv v v zE k kH j H M Jzj       222222111tttzkjkjjkkjkj     Note thatTMzFields (cont.)8Hence2iiutzv v zEkkH M Jzj    (4)TMzFields (cont.)9Equations (2) and (4) are rewritten as2ivuuiiutzv z vHJ j EzEkkM J Hzj      TMzFields (cont.)10Define:2TMTM iuTMTM i itzvzIj V JzkkVI M Jzj      We then have    ,,,,TMu x yTMv x yV z E k k zI z H k k zTMzFields (cont.)11Telegrapher’s Equations dsiv v L z v zt     LzCzdsizdsvzdsviLvzt  Allow for distributed sourcesso v+v-+-+-zi+i-12Telegrapher’s Equations (cont.)dsVj LI Vz  Also, dsvi i C z i zt     dsivCizt  dsIj CV Iz  Hence, in the phasor domain, Hence, in the phasor domain, so13Telegrapher’s Equations (cont.)Compare field equations for TMzfields with TL equations:dsVj LI Vz  dsIj CV Iz    TMTM iuIj V Jz   22TMTM i itzvzkkVj I M Jz      14Telegrapher’s Equations (cont.)We then make the following identifications:Hence22zCkL222022TLzzzTLzzkk LC kkkLZC        0TLzzTLzkkkZor15Sources: TMzTMTMdisud i its v zIJkV M J  For the sources we have, for the TMzcase:16Then we haveAssume Similarly,   , , , ( )sJ x y z J x y zTM is suIJTM is svVMSpecial case: planar surface-current sources:   , , , ( )sM x y z M x y zSources: TMz(cont.)  TMTMdis sudisvI J zV M zThis is a lumped parallel current generator.This is a lumped series voltage generator.17IfFor a vertical planar electric current: , , ( , ) ( )izJ x y z f x y z ,TMts x ykV f k kThen we haveSources: TMz(cont.)z = 0Example: ( , ) ( ) ( )f x y x y(unit-amplitude vertical electric dipole) ,1xyf k k 18TEzFieldsUse duality:iiiiEHHEJMMJ2ivuuiiutzv z vEM j HzHkkJ M Ezj         2ivuuiiutzv z vHJ j EzEkkM J Hzj      TMzTEz19TEz(cont.)Define 22TETE iuTETE i itzvzVj I MzkkIj V J Mz           0TLzzTEzkkZk22zLkC    ,,,,TEv x yTEu x yV z E k k zI z H k k zWe then identify20TEz(cont.)For the sources, we haveTETEdisud i its v zVMkI J MSpecial case of horizontal surface currents:TE is suTE is svVMIJSpecial case of vertical planar currents:TEtskIg ( , ) ( )izM g x y z21SummaryTMuTMvTEvTEuVEIHVEIHTM is suTM is svIJVMTE is suTE is svIMVJSpecial case of horizontal surface currents:TETEdisud i its v zVMkI J MTMTMdisud i its v zIJkV M J  22Summary (cont.)Special case of vertical planar currents:TMtskVf ( , ) ( )izJ f x y z ( , ) ( )izM g x y


View Full Document

UH ECE 6345 - ECE 6345 Notes 24

Download ECE 6345 Notes 24
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ECE 6345 Notes 24 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ECE 6345 Notes 24 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?