DOC PREVIEW
UH ECE 6345 - ECE 6345 Notes 2

This preview shows page 1-2-17-18-19-35-36 out of 36 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 36 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

ECE 6345ECE 6345ECE 6345ECE 6345Spring 2011Prof. David R. JacksonECE Dept.Notes 2otes1OverviewOverviewThis set of notes treats circular polarization, obtained by using a single feed. yLW≈00yx=W00yxxL(x0, y0)2LOverviewOverviewGoals: Find the optimum dimensions of the CP patchFind the input impedance of the CP patchFind the input impedance of the CP patch Find the pattern (axial-ratio) bandwidth Find the impedance bandwidth of CP patch3Amplitude of Patch CurrentsAmplitude of Patch CurrentsywL00(, )xyWrεxh1[ ]IA=First Step: Find the patch currents (x and y directions), and relate them to the input impedance of the patch. 4pp pAmplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)Lywεx00(, )xyhWrεhxπ⎛⎞1[ ]IA=ˆsinxsxxJxALπ⎛⎞=⎜⎟⎝⎠x-directed current mode (1,0):πy⎛⎞⎟⎜5sinysyπyˆJyAW⎛⎞⎟⎜=⎟⎜⎟⎟⎜⎝⎠y-directed current mode (0,1):Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)ˆˆJnH zH=×=−×x mode:sJnH zH××ysxHJ=soysinxπxˆHyAL⎛⎞⎟⎜=⎟⎜⎟⎟⎜⎝⎠L⎝⎠EjHωε=×∇To find E, use11cosyxHHxEAππ∂⎡⎤∂⎛⎞ ⎛ ⎞==⎜⎟ ⎜ ⎟⎢⎥600coszxrrEAjxyj LLεε εε=−=⎜⎟ ⎜ ⎟⎢⎥∂∂⎝⎠ ⎝ ⎠⎣⎦Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)()xyxyin z z z in inVZVhEhEEZZI= = =− =− + = +I00cosxin xrxjhZALLππωε ε⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠For the (1,0) mode we have0xiZLAωε ε⎡⎤00cosinrxZLAxjhLωε εππ⎡⎤=⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠or7⎝⎠A similar derivation holds for the y mode.Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)0yin ryZWAjhωε ε⎡⎤=⎢⎥⎛⎞⎣⎦y mode:0cosyyjhWππ⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠()01xrLAωε ε⎡⎤=⎢⎥The patch current amplitudes can then be written as where()()1xxxinyyAAZAAZ==10cosAxjhLππ=⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠1yinAAZ=()0101cosyrWAyjhWωε εππ⎡⎤=⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠8W⎜⎟⎝⎠Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)()0101cosxrLAxjhωε εππ⎡⎤⎢⎥⎛⎞⎣⎦⎜⎟()0101cosyrWAyjhωε εππ⎡⎤⎢⎥⎛⎞⎣⎦⎜⎟cosL⎜⎟⎝⎠cosW⎜⎟⎝⎠LW≈Assumey00LWxy=ssu eWxL(x0, y0)()()111xyAAA≈≡Then9LAmplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)xyRRRBecause of the nearly equal dimensions and the feed along the diagonal, we havexyRRR≈≡Ri= resonant input resistance of the mode i, when excited by itself (e g by a feed along the centerline)2xiAAZ=We then have(e.g., by a feed along the centerline).where22xinyyinAAZAAZ=21AAR=Reminder: The bar denotes impedances that are normalized byR(eitherRorR)10Reminder: The bar denotes impedances that are normalized by R(either Rxor Ry).Amplitude of Patch Currents (cont.)Amplitude of Patch Currents (cont.)⎡⎤The A2coefficient can be written as020cosrLRAxjhLωεεππ⎡⎤≈⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠200cosedgerLxRLLπωεε⎝⎠⎛⎞⎜⎟⎡⎤⎝⎠⎢⎥00cosrLxjhLππ⎡⎤⎝⎠≈⎢⎥⎛⎞⎣⎦⎜⎟⎝⎠00cosredgexLRLjhπωεεπ⎡⎤⎛⎞=⎜⎟⎢⎥⎝⎠⎣⎦11Circular Polarization ConditionCircular Polarization Condition()1LW δ=+y()W00yx=x(x0, y0)LThe CP condition is=xAamplitude of x modejAAy±=12=yAamplitude of y modeAxCircular Polarization Condition (cont.)Circular Polarization Condition (cont.)The frequency f0is defined as the frequency for which we get CP at broadside.0ffAxfyfAt f = f0:()212 1xrxAAjQ fA=+−00rx ryffffff≡≡where()212 1yryAAjQ f=+−rx ryxyfffffrx= resonance frequency of (1,0) mode13fry= resonance frequency of (0,1) modeCircular Polarization Condition (cont.)Circular Polarization Condition (cont.)Qfrx211 =−ChooseQfQry2112−=−Q2AA=Then we haveAj421ππAAjAyx=+=1jeeejjAAjjjxy===−+=−2442211ππ14jy−1(LHCP)Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)111ffThe frequency conditions can be written as00011111122211 1111xrxxyfffQfQfQfff−= =+ ≈−0011122 2yryyfffQfQ fQ−=− =− ≈+02xyfff+=so()yxfff +=210or152Circular Polarization Condition (cont.)Circular Polarization Condition (cont.)0011122yxffff Q QQ⎛⎞⎟⎜⎟−= −− =⎜⎟⎜⎟⎜⎝⎠Alsoxyfff−≡ΔLet1fΔ=Then we have0fQ02fQ0f02fQ16xfyffCircular Polarization Condition (cont.)Circular Polarization Condition (cont.)Summary of frequencies00111122xyff ffQQ⎡⎤ ⎡⎤=− =+⎢⎥ ⎢⎥⎣⎦ ⎣⎦(LHCP)0022xyQQ⎢⎥ ⎢⎥⎣⎦ ⎣⎦()00111122xyff ffQQ⎡⎤ ⎡⎤=+ =−⎢⎥ ⎢⎥⎣⎦ ⎣⎦(RHCP)⎣⎦ ⎣⎦f0=frequency for which we get CP at broadside.17f0frequency for which we get CP at broadside.Patch Dimensions for CPPatch Dimensions for CPWLrεLΔLΔrεPMCPMC18()WhfLr,,ε=ΔPhysical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)()WhfLr,,ε=Δ2eLLL=+Δ0erkLεπ=(resonance condition)0002kfπμε≡Let00000022xxyykfkfπμεπμε≡19Physical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)()002exr x rkL k L Lεπεπ=+Δ=()02yrkW Wεπ+Δ=Similarly, we have()0yr()2,,LLhWπε=−ΔHence()()02,,2rxrLLhWkWWhLεεπεΔ=ΔNote: For ΔW, we use the same formula as ΔL , but replace W → L.20()02,,ryrWWhLkεε=−ΔPhysical Dimensions for CP (cont.)Physical Dimensions for CP (cont.)Since the patch is nearly square, the two fringing extensions are nearly equal. Hence we havewhere2LLπ=−Δyq022xrLLkWLεπΔΔ00000022xxyykfkfπμεπμε≡≡02yrWLkε=−Δ000yyNote: For the calculation of ΔL it is probably accurate enough to use the patch dimensions that come from neglecting fringing.21the patch dimensions that come from neglecting fringing.Hammerstad’s FormulaHammerstad’s Formula0.2620 300Wε⎡⎤+⎢⎥⎡⎤+0.3000.4120.2580.813rerehLhWhεε⎢⎥⎡⎤+Δ=⎢⎥⎢⎥−⎣⎦⎢⎥+⎣⎦⎣⎦111rrεεε⎛⎞⎛⎞+−⎟⎟⎜⎜=+⎟⎟⎜⎜22112reεhW=+⎟⎟⎜⎜⎟⎟⎜⎜⎝⎠⎝⎠+22Input Impedance of CP PatchInput Impedance of CP Patch() () ()()()12 112 1xyin in inrxryRRZf Zf ZfjQ fjQ f=+= ++−+−1 1/(2) 11/(2)rx ryfQf Q−=− − =andAt f0(LHCP)()011inRRZfjj=+−+so(1)(1) (1)(1)(1 )(1 ) 2jjRjRjRjRjjj++− ++−==−+RZin=orThe CP frequency f0is also the resonance frequency where the 23ininput impedance is real (if we neglect the probe inductance).Input Impedance of CP PatchInput Impedance of CP Patch⎛⎞Hence, at the resonance (CP) frequency f0we have20cosin edgexZRLπ⎛⎞=⎜⎟⎝⎠Note: We have a CAD formula forRedge.Note: We have a CAD formula


View Full Document

UH ECE 6345 - ECE 6345 Notes 2

Download ECE 6345 Notes 2
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ECE 6345 Notes 2 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ECE 6345 Notes 2 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?