DOC PREVIEW
UB EE 566 - Quantum Lasers

This preview shows page 1-2-3-24-25-26 out of 26 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 26 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Quantum LasersOverview1. Quantum LasersSingle-Quantum Well Laser (SQWL)Refractive Index and Mode ProfileMultiple-Quantum Well Laser (MQWL)Separate Confinement Heterostructure (SCH)Graded-Index SCH Laser (GRINSCH L)Quantum Cascade Laser (QC L) — PrincipleQC Laser — -TailoringQC Laser — DataQuantum Dot Lasers (QD L) — 1. PrincipleQD L — 2. Principle2. SummaryWhat we left out… (more presentations?)3. References (QC L)4. References (QD L)History of LasersWhere to find papers……Wanna BUY a quantum laser?1. Example: Quantum Cascade Laser2. Example: Single-Mode SQW GRINSCH LPricelist (all in US Dollars)Abbreviations (Alphabetical Order)For those who want to know more…Quantum Lasers,M. Momeni1Quantum LasersEE 566 Optical CommunicationsMassoud MOMENIGrad [email protected] Lasers,M. Momeni2Overview1. Quantum Lasers Q La) Single-Quantum Well Laser SQW Lb) Multiple-Quantum Well Laser MQW Lc) Separate Confinement Heterostructure Laser SCH Ld) Graded-Index SCH Laser GRINSCH Le) Quantum Cascade Laser QC Lf) Quantum Dot Laser QD L2. Summary3. References and…Quantum Lasers,M. Momeni31. Quantum LasersLASER = Light Amplification by Stimulated Emission of RadiationQuantum Lasers,M. Momeni4Single-Quantum Well Laser (SQWL)Double Heterostructure:GFpFnEEE )(1)(VVVCEfhfEf or, alternatively,Basic Laser condition:nmhfV > 0P p NEVECEFpEFnEelEholeQuantum Lasers,M. Momeni5Refractive Index and Mode Profilep+n+P p n+P p NHomostructure Single Heterostructure (SHS) Double Heterostructure (DHS)noptical fieldOptical confinement is higher for a DHSElectrical confinement is higher for a DHS lower IthQuantum Lasers,M. Momeni6Multiple-Quantum Well Laser (MQWL)P p PEVECMQW using isotype SQW:mini bandsP p P p P p P p Phf hf hf hfMQW DFBMQW DFBQuantum Lasers,M. Momeni7Separate Confinement Heterostructure (SCH)hfEVxP p NECInPInGaAsPInGaAsPInPInGaAsPInGaAsMQW regionSCH region SCH regioncladding cladding5 nm10 nm50 nmQuantum Lasers,M. Momeni8ECEG ( InP )Graded-Index SCH Laser (GRINSCH L)EG ( InGaAsP )EG ( InGaAs )EVGRIN regionGRIN region MQW regionncladding claddingxQuantum Lasers,M. Momeni9Quantum Cascade Laser (QC L) — Principleinterband transition:intersubband transition:EapplTunneling rate >> 3 = 1 psand 2 = 0.3 ps << 32 > 1 ps  population inversionQuantum Lasers,M. Momeni10QC Laser — -TailoringQuantum Lasers,M. Momeni11QC Laser — DataData [1–5]:Applications [1–6]:•Military and Security•Commercial, Medical•Free-Space Optical Communication Systems and Astronomy•Gas detection based on laser spectroscopy with CW or pulsed QC DFB lasers (chemical sensors)L[m]Pout[mW]Jth [A/cm2] /Eth [kV/cm]operation modeTfirst demo[year]$$$3.4 – 80 200 – 300 (CW) up to 1000 (PM)250 – 290 /7.5 – 48PM or CW on cooler350 1994 AT&T Bell Labs(later)Material systems: GaAs based, InP based, Si / SiGe on GaSb, InAs / AlSb on GaSbCW = continuous wave; PM = pulse modeQuantum Lasers,M. Momeni12Quantum Dot Lasers (QD L) — 1. Principleb) tunneling-injection QD laser:a) schematic view:Quantum Lasers,M. Momeni13QD L — 2. Principlea) Prevention of parasitic b) “Limit case” recombination in the OCLn-claddingp-claddingOCLOCLQDelectronsholesQuantum Lasers,M. Momeni142. SummaryQuantum Lasers use the structures we have discussed so far in order to1. optimize the properties of a simple Fabry-Perot Laser (L, R, g, ),2. Increase efficiency ()3. reduce the threshold current (Ith) and its temperature dependency,4. change the wavelength of the laser beam ( ),5. achieve continuous wave (CW) operation @ RT, and6. increase the output power (P).Fabrication:1. Metallorganic chemical vapor deposition MOCVD2. Molecular beam epitaxy MBEQuantum Lasers,M. Momeni15What we left out… (more presentations?)Basics:oQuantum Effects (energy quantization, first and second order tunneling effect,…)oSimple Fabry Perot Laser (FPL) and characteristicsoConcept of gain-guided (active) or index-guided (passive) lasers (wave guiding), e.g. in buried heterostructure lasers (BHS), or separate lateral confinement (LC)oDistributed bragg reflector (DBR), distributed feedback bragg (reflector) (DFB)R&D:-Blue Lasers or GaN Lasers-Tunable Lasers (TL) or Tunable Diode Lasers (TDL)-Vertical Cavity Surface Emitting Lasers (VCSEL)-Strained heterostructure QW lasersQuantum Lasers,M. Momeni163. References (QC L)[1] Sirtori C., Nagle J., “Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared.” Comptes Rendus Physique, In Press, Corrected Proof, Sep. 2003http://www.sciencedirect.com/science/article/B6X19-49FGMWM-6/2/299ee308e587b6215f4731fbe5cfd566[2] Garciaa M., Normand E., Stanley C.R., Ironside C.N., Farmer C.D., Duxbury G., Langford N., "An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3.“ Optics Communications, In Press, Uncorrected Proof, Sep. 2003.http://www.sciencedirect.com/science/article/B6TVF-49FXMFB-3/2/607fb52178f815aca3c266c7cf670524[3] Köhler, R., Tredicucci A., Beltram F., Beere H.E., Linfield E.H., Davies A.G., Ritchie D.A., Iotti, R.C., Rossi F., "Terahertz semiconductor-heterostructure laser" letters to nature, vol. 417 no. 6885, pp. 156–159, May 2002.[4] Sirtori C., "Applied physics: Bridge for the terahertz gap." Nature news and views, vol. 417, no. 6885, pp. 132–133, May 2002.[5] Beck M., Hofstetter D., Aellen T., Faist J., Oesterle U., Ilegems M., Gini E., Melchior H., “Continuous wave operation of a mid-infrared semiconductor laser at room temperature.” Science, vol. 295, issue 5553, pp. 301–305, Jan. 2002. [6] Kosterev A.A., Tittel F.K., "Chemical Sensors Based on Quantum Cascade Lasers." IEEE Journal of Quantum Electronics, vol. 38, no. 6, , pp. 582–591, June 2002.Quantum Lasers,M. Momeni174. References (QD L)[7] Asryan L.V., Luryi S., "Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability" IEEE Journal of Quantum Electronics, vol. 37, no. 7, pp. 905–910, July 2001.http://www.ee.sunysb.edu/~serge/177.pdf http://www.ee.sunysb.edu/~serge/publist.pdf[8] Asryan L.V., Luryi S., Suris R.A., "Internal Efficiency of Semiconductor Lasers With a Quantum-Confined Active Region." IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 404–418, March 2003.http://www.ee.sunysb.edu/~serge/191.pdf[9] Pelton M., Yamamoto Y., "Ultralow


View Full Document

UB EE 566 - Quantum Lasers

Download Quantum Lasers
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Quantum Lasers and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Quantum Lasers 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?