Unformatted text preview:

6.003: Signals and SystemsModulationMay 6, 2010Course VI Underground GuidePlease give us and future students feedback on 6.003 by participatingin the Course VI Underground Guide Survey:https://sixweb.mit.edu/student/evaluate/6.003-s2010Communications SystemsSignals are not always well matched to the media through which wewish to transmit them.signal applicationsaudio telephone, radio, phonograph, CD, cell phone, MP3video television, cinema, HDTV, DVDinternet coax, twisted pair, cable TV, DSL, optical fiber, E/MAmplitude ModulationAmplitude modulation can be used to match audio frequencies toradio frequencies. It allows parallel transmission of multiple channels.x1(t)x2(t)x3(t)z1(t)z2(t) z(t)y(t)z3(t)cosw1tcosw2tcoswctcosw3tLPFSuperheterodyne ReceiverEdwin Howard Armstrong invented the superheterodyne receiver,which made broadcast AM practical.Edwin Howard Armstrong also invented andpatented the “regenerative” (positive feedback)circuit for amplifying radio signals (while he wasa junior at Columbia University). He also in-vented wide-band FM.Amplitude, Phase, and Frequency ModulationThere are many ways to embed a “message” in a carrier. Here arethree.Amplitude Modulation (AM): y1(t) = x(t) cos(ωct)Phase Modulation (PM): y2(t) = cos(ωct + kx(t))Frequency Modulation (FM): y3(t) = cosωct + kRt−∞x(τ )dτFrequency ModulationIn FM, the signal modulates the instantaneous carrier frequency.y3(t) = cosωct + kZt−∞x(τ )dτ| {z }φ(t)ωi(t) = ωc+ddtφ(t) = ωc+ kx(t)Frequency ModulationCompare AM to FM for x(t) = cos(ωmt).AM: y1(t) = (cos(ωmt) + 1.1) cos(ωct)tFM: y3(t) = cos(ωct + m sin(ωmt))tAdvantages of FM:• constant power• no need to transmit carrier (unless DC important)• bandwidth?Frequency ModulationEarly investigators thought that narrowband FM could have arbitrar-ily narrow bandwidth, allowing more channels than AM. Wrong!y3(t) = cosωct + kZt−∞x(τ )dτ= cos(ωct) × coskZt−∞x(τ )dτ− sin(ωct) × sinkZt−∞x(τ )dτIf k → 0 thencoskZt−∞x(τ )dτ→ 1sinkZt−∞x(τ )dτ→ kZt−∞x(τ )dτy3(t) ≈ cos(ωct) − sin(ωct) ×kZt−∞x(τ )dτBandwidth of narrowband FM is the same as that of AM!(integration does not change bandwidth)Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .m0−mm sin(ωmt)t10−1cos(m sin(ωmt))tincreasing mPhase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 0Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 1Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 2Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 5Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 10Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 20Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 30Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 40Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore cos(m sin(ωmt)) is periodic in T .10−1cos(m sin(ωmt))t|ak|k0 10 20 304050 60m = 50Phase/Frequency ModulationFourier transform of first part.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt)))| {z }ya(t)− sin(ωct) sin(m sin(ωmt)))|Ya(jω)|ωωcωc50ωmm = 50Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore sin(m sin(ωmt)) is periodic in T .m0−mm sin(ωmt)t10−1sin(m sin(ωmt))tincreasing mincreasing mPhase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m sin(ωmt))= cos(ωct) cos(m sin(ωmt))) − sin(ωct) sin(m sin(ωmt)))x(t) is periodic in T =2πωm, therefore sin(m sin(ωmt)) is periodic in T .10−1sin(m sin(ωmt))t|bk|k0 10 20 304050 60m = 0Phase/Frequency ModulationFind the Fourier transform of a PM signal.x(t) = sin(ωmt)y(t) = cos(ωct + mx(t)) = cos(ωct + m


View Full Document

MIT 6 003 - Modulation

Documents in this Course
Control

Control

11 pages

PROBLEMS

PROBLEMS

14 pages

QUIZ I

QUIZ I

9 pages

Modes

Modes

11 pages

Load more
Download Modulation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Modulation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Modulation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?