DOC PREVIEW
MIT 5 80 - The Born-Oppenheimer Approximation

This preview shows page 1-2-15-16-17-32-33 out of 33 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 33 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.Lecture # 8 Supplement Contents 1. Excerpts from The Spectra and Dynamics of Diatomic Molecules . . . . . . . . . . . 1 2. Electronic Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. Excerpts from The Spectra and Dynamics of Diatomic Molecules by Professor Robert W. Field and Hel´ `ene Lefebvre-Brion Elsevier Academic Press 2004 1Chapter 3 Terms Neglected in the Born-Oppenheimer Approximation Contents 3.1 The Born-Oppenheimer Approximation ...... 89 3.1.1 Potential Energy Curves . . . . . . . . . . . . . . . . 90 3.1.2 Terms Neglected in the Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . . . 92 3.1.2.1 Electrostatic and Nonadiabatic Part of H .92 3.1.2.1.1 Crossing or Diabatic Curves . . . 93 3.1.2.1.2 Noncrossing or Adiabatic Curves . 94 3.1.2.2 The Spin Part of H ............. 94 3.1.2.3 Rotational Part of H ............ 96 3.2 Basis Functions . . . . ................. 99 3.2.1 Hund’s Cases . . . . . . . . . . . . . . . . . . . . . . 101 3.2.1.1 Definition of Basis Sets . . . . . . . . . . . 103 3.2.1.2 Quantum Numbers, Level Patterns, and the Effects of Terms Excluded from H(0). . 113 3.2.1.3 Intermediate Case Situations . . . . . . . . 126 3.2.1.3.1 Introduction . . . . . . . . . . . . 126 3.2.1.3.2 Examples . . . . . . . . . . . . . . 127 3.2.1.4 Transformations Between Hund’s Case Ba- sis Sets . . . . . . . . . . . . . . . . . . . . 130 3.2.1.5 Spectroscopic vs. Dynamical Hund’s Cases 136 3.2.1.6 Relationship between Noncommuting Terms in H and the Most Appropriate Hund’s Case137 3.2.2 Symmetry Properties . . . . . . . . . . . . . . . . . . 138� � 88 Terms Neglected in the Born-Oppenheimer Approximation 3.2.2.1 Symmetry Properties of Hund’s Case (a) Basis Functions . . . . . . . . . . . . . . . 138 3.2.2.2 Symmetry Properties of non-Hund’s Case (a) Basis Functions . . . . . . . . . . . . . 146 3.2.3 Molecular Electronic Wavefunctions . . . . . . . . . 148 3.2.4 Matrix Elements between Electronic Wavefunctions 156 3.3 Electrostatic Perturbations ............. 161 3.3.1 Diabatic Curves . . . . . . . . . . . . . . . . . . . . 163 3.3.2 Approximate Representation of the Diabatic Elec- tronic Wavefunction . . . . . . . . . . . . . . . . . . 165 3.3.3 Adiabatic Curves . . . . . . . . . . . . . . . . . . . . 168 3.3.4 Choice between the Diabatic and Adiabatic Models . 172 3.3.5 Electromagnetic Field-Dressed Diabatic and Adia- batic Potential Energy Curves . . . . . . . . . . . . 177 3.4 Spin Part of the Hamiltonian . . . . . . ...... 180 3.4.1 The Spin-Orbit Operator . . . . . . . . . . . . . . . 181 3.4.2 Expression of Spin-Orbit Matrix Elements in Terms of One-Electron Molecular Spin-Orbit Parameters . 183 3.4.2.1 Matrix Elements of the lzi szi Term . . . 183· 3.4.2.1.1 Diagonal Matrix Elements . . . . 183 3.4.2.1.2 Off-Diagonal Matrix Elements . . 187 l+ i s−+ l− +3.4.2.2 Matrix Elements of the i i si Part of HSO .................... 190 3.4.3 The Spin-Rotation Operator . . . . . . . . . . . . . 191 3.4.4 The Spin-Spin Operator . . . . . . . . . . . . . . . . 196 3.4.4.1 Diagonal Matrix Elements of HSS: Calcu- lation of the Direct Spin-Spin Parameter . 196 3.4.4.2 Calculation of Second-Order Spin-Orbit Ef- fects . . . . . . . . . . . . . . . . . . . . . . 198 3.4.4.2.1 π2 Configuration . . . . . . . . . . 201 3.4.4.2.2 π3π (or π3π3 and ππ) Configu- rations . . . . . . . . . . . . . . . 201 3.4.4.3 Off-Diagonal Matrix Elements . . . . . . . 202 3.4.5 Tensorial Operators . . . . . . . . . . . . . . . . . . 203 3.5 Rotational Perturbations . . ............. 210 3.5.1 Spin-Electronic Homogeneous Perturbations . . . . . 210 3.5.2 The S-Uncoupling Operator . . . . . . . . . . . . . . 212 3.5.3 The L-Uncoupling Operator . . . . . . . . . . . . . . 213 3.5.4 2Π ∼ 2Σ+ Interaction . . . . . . . . . . . . . . . . . 217 3.6 References ........................ 22789 3.1 The Born-Oppenheimer Approximation 3.1 The Born-Oppenheimer Approximation The exact Hamiltonian H for a diatomic molecule, with the electronic coordi-nates expressed in the molecule-fixed axis system, is rather difficult to derive. Bunker (1968) provides a detailed derivation as well as a review of the coordi-nate conventions, implicit approximations, and errors in previous discussions of the exact diatomic molecule Hamiltonian. Our goal is to find the exact solutions, ψT i (T = Total), of the Schr¨odinger equation, HψT i = ET i ψT i , (3.1.1) which correspond to the observed (exact) EiT energy levels. H is the nonrela-tivistic Hamiltonian, which may be approximated by a sum of three operators, H = TN (R, θ, φ)+ Te(r)+ V (r, R), (3.1.2) where TN is the nuclear kinetic energy, Te is the electron kinetic energy, V is the electrostatic potential energy for the nuclei and electrons (including e−−e−,e−−N and N − N interactions), R is the internuclear distance, θ and φ specify the orientation of the internuclear axis (molecule-fixed coordinate system) relative to the laboratory coordinate system (see Section 2.3.3 and Fig. 2.4), and r represents all electron coordinates in the molecule-fixed system. The nuclear kinetic energy operator is given by �� � � � � R2 2µR2 ∂R ∂R sin θ ∂θ ∂θ sin2 θ ∂φ2TN (R, θ, φ)= −�2 ∂ ∂ +1 ∂ sin θ∂ +1 ∂2 , (3.1.3a) where MAMB µ = MA + MB is the nuclear reduced mass, with MA and MB the masses of atoms A and B. TN can be divided into vibrational and rotational terms, TN (R, θ, φ)= TN (R)+ HROT (R, θ, φ). (3.1.3b) The electron kinetic energy operator is 2Te(r)= −�2 � …


View Full Document

MIT 5 80 - The Born-Oppenheimer Approximation

Download The Born-Oppenheimer Approximation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view The Born-Oppenheimer Approximation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view The Born-Oppenheimer Approximation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?