Unformatted text preview:

MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1978 Problem Set #3 1. See Problem Set #3, 1976, Question #1. 2. See Problem Set #3, 1976, Question #2. 3. See Problem Set #3, 1976, Question #3. 4. See Problem Set #3, 1976, Question #4. 5. See Problem Set #3, 1976, Question #5. 6. See Problem Set #3, 1976, Question #6. 7. See Problem Set #3, 1976, Question #7. 8. See Problem Set #3, 1976, Question #8. 9. The classical statement of the Franck-Condon principle is that, in an electronic transition, an electron jumps before the nuclei can alter their positions and momenta. In wave mechanics, position and momenta are not sharply defined for an energy eigenstate, yet we persist in drawing diagrams with vertical lines connecting turning points and using these diagrams to predict the strongest transitions. See J. Tellinghuisen, Phys. Rev. Lett. 34, 1137 (1975) and Chem. Phys. Lett. 29, 359 (1974). (a) Explicitly translate the classical statement into wave mechanical language. Explain why an overlap integral for a pair of vibrational wavefunctions should be large if the classical Franck-Condon conditions are satisfied. Note that a function that is analogous to the classical momentum p(x) = (2µ)1/2[E − V(x)]1/2 determines how fast the vibrational wavefunction oscillates. Explain what will happen if the two vibra-tional wavefunctions oscillate in phase over a small range of x but have a random phase relationship elsewhere. Is the in-phase relationship satisfied anywhere in addition to near turning points? (b) Draw two Morse curves defined by the following constants: Te��= 0 cm−1 Te�= 10, 000 cm−1 D��e = 10, 000 cm−1 D�e = 5, 000 cm−1 R��e = 1.44 × 10−8 cm−1 Re�= 1.8 × 10−8 cm−1 ω��e = 582 cm−1 ωe�= 329 cm−1 and determine the two strongest transitions originating from v� = 27. Use a reduced mass of µ = 6.857 amu.5.76 Problem Set #3 Spring, 1978 page 2 (c) Plot V�(x) − V��(x) vs. x. Use this curve to determine (i) The long and short wavelength limits of all bands in this system which possess significant intensity; (ii) The long and short wavelength limits of strong bands from v� = 27; (iii) The region(s) of x where the electronic transition moment is sampled for the (27, 27) band. (iv) The wavelength region in which erratic intensity variations will


View Full Document

MIT 5 80 - Study Notes

Download Study Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?