DOC PREVIEW
MIT 3 012 - Physical Observables from Wavefunctions

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)3.012 Fund of Mat Sci: Bonding – Lecture 3GHOST IN THE MACHINEImage of a quantum mirage produced by a Co atom placed in the focus of a Co elliptical corral, removed for copyright reasons. Don Eigler, IBM Almaden, Nature (2000). See http://domino.watson.ibm.com/comm/pr.nsf/pages/rscd.quantummirage-picb.html/$FILE/mirage2.jpg@Bobby Douglas, from photo.net3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Last time: Schrödinger equation 1. Time-dependent Schrödinger equation for one electron in a potential V(r,t) (a plane wave satisfies this eqn.)2. For a stationary potential V(r), we introduced the method of separation of variables, and obtained a) the stationary Schrödinger equation for the spatial part φ(x), and b) the equation for the time-dependent function f(t)3. Homework: for a free particle it is easy to obtain φ(x) and f(t), and one obtains back the equation of a plane wave4. Studied a free particle in an infinite well (particle in a box)3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Homework for Fri 16• Study: 15.3 (2-,3-dim box), 16.3 (π-electrons in conjugated molecules), 16.5-6 (scanning tunnelling microscope)• Optional read: 1986 Nobel lecture by Binnig and Rohrer (on the MIT server)3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Physical Observables from Wavefunctions• Eigenvalue equation: (the operator is obtained via the “correspondence” principle)• Expectation values for the operator (energy)222() () ()2ExVxxdxmxϕϕ∗⎡⎤∂=−+⎢⎥∂⎣⎦∫h222() () () 2dVx x E xmdxϕϕ⎡⎤−+ =⎢⎥⎣⎦h3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Normalization3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Infinite Square Well222()()2dxExmdxϕϕ−=hFigure by MIT OCW.201816141210864200.0 0.2 0.4 0.6 0.8 1.0x/aEnergy or wave function value3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Infinite Square Well20181614121086420Energy Figure by MIT OCW.3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Absorption Lines (atomic units)3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)The power of carrots• β-carotenePhoto courtesy of Andrew Dunn.3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Particle in a 2-dim box22 222(, ) (, )2xy E xymx yϕϕ⎛⎞∂∂−+ =⎜⎟∂∂⎝⎠h3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Particle in a 2-dim box(, ) sin sinlx myxy Cabππϕ⎛⎞⎛ ⎞=⎜⎟⎜ ⎟⎝⎠⎝ ⎠22 2228hl mEma b⎛⎞=+⎜⎟⎝⎠3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Particle in a 3-dim box: Farbe defect in halides (e-bound to a negative ion vacancy)Figure by MIT OCW.3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)From Carl Zeiss to MIT…Scanned image of a journal article removed for copyright reasons. See Avakian, P. and A. Smakula. “Color Centers in Cesium Halide Single Crystals.” Physical Review 120, no. 6 (December 15, 1960).3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Light absorption/emissionMIT Research: Bawendi, Mayes, StellacciNicola Marzari:Porphyrin from http://www.chem.uit.no/KJEMI/publications2.html, Raman spectraFrom Mauri and Lazzeri Phys. Rev. Lett. PaperNicola Marzari:Porphyrin from http://www.chem.uit.no/KJEMI/publications2.html, Raman spectraFrom Mauri and Lazzeri Phys. Rev. Lett. PaperCourtesy of Felice Frankel. Used with permission.3.012 Fundamentals of Materials Science: Bonding - Nicola Marzari (MIT, Fall 2005)Image removed for copyright reasons.See the chart of various diamondoids at http://www.physik.tu-berlin.de/cluster/diamondoids.html.Scanned image of a journal article removed for copyright reasons. See Willey, T. M. et al. “Molecular Limits to the Quantum Confinement Model in Diamond Clusters.” Physical Review Letters 95 (September 9,


View Full Document

MIT 3 012 - Physical Observables from Wavefunctions

Documents in this Course
Quiz 4

Quiz 4

10 pages

GLASSES

GLASSES

23 pages

Quiz 1

Quiz 1

8 pages

Polymers

Polymers

17 pages

BONDING

BONDING

4 pages

Quiz 2

Quiz 2

8 pages

Load more
Download Physical Observables from Wavefunctions
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Physical Observables from Wavefunctions and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Physical Observables from Wavefunctions 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?