DOC PREVIEW
UIUC MATH 415 - lecture24

This preview shows page 1-2 out of 5 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 5 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

• We can deal with “complicated” linear systems, but what to do if there is no solutionsand we want a “best” approximate solution?This is important for ma ny applications, including fitting data.• Suppos e Ax = b has no solution. This means b is not in Col(A).Idea: find “best” approximate solution by replacingb with its projection onto Col(A).• Recall: if v1,, vnare (pairwise) orthogonal:v1·(c1v1++ cnvn) = c1v1·v1Implies: the v1,, vnare independent (unless one is the zero vector)Orthogonal basesDefinition 1. A basis v1,, vnof a vector space V is an orthogonal basis if thevectors are (pairwise) orthogonal.Example 2. The standard basis100,010,001is an orthogonal basis for R3.Example 3. Are the vectors1−10,110,001an orthogonal basis for R3?Solution.Armin [email protected]1−10·110= 01−10·001= 0110·001= 0So this is an orthogonal basis.Note that we do not need to check that the three vectors are independent. That followsfrom their orthogonality.Example 4. Suppos e v1,, vnis an orthogonal basis of V , and th a t w is in V . Findc1,, cnsuch thatw = c1v1++ cnvn.Solution. Take the dot product o f v1with both sides:v1·w = v1·(c1v1++ cnvn)= c1v1·v1+ c2v1·v2++ cnv1·vn= c1v1·v1Hence, c1=v1·wv1·v1. In general, cj=vj·wvj·vj.If v1,, vnis an orthogonal basis of V , and w is in V , thenw = c1v1++ cnvnwith cj=w ·vjvj·vj.Example 5. Express374in terms of the basis1−10,110,001.Solution.374= c11−10+ c2110+ c3001=374·1−101−10·1−101−10+374·110110·110110+374·001001·001001=−421−10+102110+41001Armin [email protected] 6. A basis v1,, vnof a vector space V is an orthonormal basis if thevectors are orthogonal and have len g th1.Example 7. The standard basis100,010,001is an orthonormal basis for R3.If v1,, vnis an orthonormal basis of V , and w is in V , thenw = c1v1++ cnvnwith cj= vj·w.Example 8. Express374in terms of the basis100,010,001.Solution. That’s trivial, of course:374= 3100+ 7010+ 4001But note that the coeffi cients are374·100= 3,374·010= 7,374·001= 4.Example 9. Is the basis1−10,110,001orthonormal? If not, normalize the vectorsto produce an orthonormal basis.Solution.1−10has length1−10·1−10s= 2√normalized:12√1−10110has length110·110s= 2√normalized:12√110001has length001·001s= 1is already normalized:001The corresponding orthonormal basis is12√1−10,12√110,001.Armin [email protected] 10. Express374in terms of the basis12√1−10,12√110,001.Solution.374·12√1−10=−42√,374·12√110=102√,374·001= 4.Hence, just as in Example 5:374=−42√12√1−10+102√12√110+ 4001Orthogonal projectionsyxˆxx⊥Definition 11. The orthog on al projection of vector x ontovector y isxˆ=x · yy · yy.• The vector xˆis the cl osest vector to x, which i s inspan{y }.• Characterized by: the “error” x⊥= x −xˆis orthogonal tospan{y }.• To find the formula for xˆ, start with xˆ= cy.(x −xˆ) · y = (x −cy) · y = x ·y −cy · y@wanted0It follows tha t c =x · yy · y.x⊥is also called the co mponent of x orthogonal to y.Example 12. What is the orthogonal projection of x =−84onto y =31?Solution.xˆ=x · yy · yy =−8 ·3 + 4 ·132+ 1231= −231=−6−2The componen t of x orthogonal to y isx −xˆ=−84−−6−2=−26.(Note that, indeed−26and31are orthogonal.)Armin [email protected] 13. What are the orthogonal projections of211onto each of the vectors1−10,110,001?Solution.211on1−10:2 ·1 + 1 ·(−1) + 1 ·012+ (−1)2+ 021−10=121−10211on110:2 · 1 + 1 ·1 + 1 ·012+ 12+ 02110=32110211on001:2 · 0 + 1 ·0 + 1 ·102+ 02+ 12001=001Note that these sum up to121−10+32110+001=211!That’s because the three vectors are an orthog onal basis forR3.Recall: If v1,, vnis an orthogonal basis of V , and w is in V , thenw = c1v1++ cnvnwith cj=w ·vjvj·vj. wdecomposes as the sum of its pr ojections onto each basis vectorArmin


View Full Document

UIUC MATH 415 - lecture24

Documents in this Course
disc_1

disc_1

2 pages

Load more
Download lecture24
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view lecture24 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view lecture24 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?