DOC PREVIEW
UIUC MATH 415 - lecture35

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Review for Midterm 3• Bring a number 2 pencil to the exam!• Extra help session: today and tomorrow, 4–7pm, in AH 441• Room assignments for Thursday, Nov 20, 7- 8:1 5pm:◦ if your last name starts with A-E: 213 Greg Hall◦ if your last name starts with F-L: 100 Greg Hall◦ if your last name starts with M-S h : 66 Library◦ if your last name starts with Si-Z: 103 Mumford Hall• Big topics:◦ Orthogonal projections◦ Least squares◦ Gram–Schmidt◦ Determinants◦ Eigenvalues and eigenvectorsOrthog onal projections• If v1,, vnis an orthogonal basis of V , and x is in V , thenx = c1v1++ cnvnwith cj=hx, vjihvj, vji.• Suppose that V is a subspac e of W , and x is in W , then the orthogonal projectionof x onto V is given byxˆ= c1v1++ cnvnwith cj=hx, vjihvj, vji.◦ The basis v1,, vnhas to be orthogo n al for this form ula!!◦ This decomposes x = xˆin V+ x⊥in V⊥, where the error x⊥is orthogonal to V . (thisdecom position is unique)v1v2xˆxx⊥Ar min [email protected]◦ The corresponding projection matrix represents xxˆwith respect to thestandard basis.Example 1.(a)What is the orth ogo n al projection of110onto span(100,010)?Solution: The proj e c tion is110.(b) What is the orthogonal projection of110onto span(1−10,1−11)?Solution: The proj e c tion is000.Wrong approach!!h110,1−10ih1−10,1−10i1−10+h110,1−11ih1−11,1−11i1−11=000This is wrong because1−10,1−11are not orthogonal. ( See next example!)(c) What is the orthogonal projection of1−10onto span(1−10,1−11)?Solution: The proj e c tion is1−10.Wrong!!h1−10,1−10ih1−10,1−10i1−10+h1−10,1−11ih1−11,1−11i1−11=1−10+231−11Corrected:1−10,1−111−10,001(for instan ce, using G ram –Schm idt)h1−10,1−10ih1−10,1−10i1−10+h1−10,001ih1−11,001i001=1−10+ 0001(d) What is the projection matrix correspondin g to orthogonal projection ontospan(010,110)?Solution: The proj e c tion matrix is1 0 00 1 00 0 0.What would Gram–Schmidt do?010,110010,100(e) What is the orthogonal projection of111onto span(010,110)?Ar min [email protected]: The proj e c tion is1 0 00 1 00 0 0111=110.• The space of all nice functions wi th period 2π has the natural inner product hf ,gi =R02πf(x)g(x)dx.[in Rn: hx, yi = x1y1++ xnyn]• The functions1, cos (x), sin (x), cos (2x), sin (2x),are an orthogonal basis for this spa ce.• Expanding a function f(x) in this basis produces its Fourier seriesf(x) = a0+ a1cos(x) + b1sin(x) + a2cos(2x) + b2sin(2x) +Example 2. How can we compute b2?Solution.b2sin(2x) is the orthogonal projection of f onto the span of sin (2x).Hence:b2=hf(x), sin (2x)ihsin (2x), sin (2x)i=R02πf(x)sin(2x)dxR02πsin2(2x)dxLeast squares• xˆis a least squares solution of the system Ax = b.xˆis such that Axˆ− b is as small as possible.ATAxˆ= ATb (the normal equations)Example 3. Find the least squares line for the data points (2, 1), (5, 2), (7, 3), (8, 3).Solution.Looking for β1, β2such that the line y = β1+ β2x best fits the data.The equationsyi= β1+ β2xiin matrix form:1 x11 x21 x31 x4design matrix Xβ1β2=y1y2y3y4ob servationvector yAr min [email protected], we ne ed to find a least squares solution to1 21 51 71 8β1β2=1233.XTX =1 1 1 12 5 7 81 21 51 71 8=4 2222 142XTy =1 1 1 12 5 7 81233=957Solving4 2222 142βˆ=957, we findβ1β2=2/75/14.Gram–SchmidtRecipe. (Gram–Schmidt orthonormalization)Given a basisa1,, an, produce an orthonormal ba sis q1,, qn.b1= a1, q1=b1kb1kb2= a2− ha2, q1iq1, q2=b2kb2kb3= a3− h a3, q1iq1− ha3, q2iq2, q3=b3kb3k• An orthogonal matrix is a square matrix Q with orthonormal columns.Equivalent ly,QTQ = I (also true for non-square matrices).• Apply Gram–Schmidt to the (in dependent) column s of A to obtain the QR decom-positionA = QR.◦ Q has orthonormal columns (the output vectors of Gram–Schmidt)◦ R = QTA is upper triangularAr min [email protected] 4. Find the QR decompos ition of A =1 12 00 1.Solution. We apply Gram–Schmidt to the co lumns of A:15√120= q1101− h101, q1iq1=101−15√15√120=4/5−2/51,19/5p4/5−2/51= q2Hence: Q = [q1q2] =15√445√25√−245√0545√And: R = QTA =15√25√0445√−245√545√1 12 00 1=55√15√0945√Determin ants• A is invertibledet (A)0• det (AB) = det (A)det(B)• det (A−1) =1det (A)• det (AT) = det (A)• The determinant is characterized by:◦ the normalization det I = 1,◦ and how it is affected by elementary row operations:− (replac ement) Add one row to a multiple of ano ther row.Does not change the determinant.− (interchange) Interc hange two row s.Reverses the sign of the determ inant.− (scaling) Multiply all entries i n a row by s.Multiplies the det e rminant bys.1 2 3 40 2 1 50 0 2 10 0 3 5@R4→R4−32R31 2 3 40 2 1 50 0 2 10 0 072= 1 · 2 · 2 ·72= 14Ar min [email protected]• Cofactor expansion is another way to compute determinants.12 03−1 220 1= −2 ·−3 221+ (−1) ·10+2 1− 0 ·1032−= − 2 ·


View Full Document

UIUC MATH 415 - lecture35

Documents in this Course
disc_1

disc_1

2 pages

Load more
Download lecture35
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view lecture35 and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view lecture35 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?