DOC PREVIEW
MIT MAS 160 - Linear Time Invariant Systems

This preview shows page 1-2-3-18-19-36-37-38 out of 38 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 38 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Ax1(t)+Bx2(t)Ay1(t)+By2(t)Linearityscaling & superpositioninputoutputTime invariancex(t-τ) y(t-τ)Linear TimeIn variantSystemy(t)x(t)Characteristic Functionsests=a+jbcomplex exponentialsLinear Time Invariant Systemsests=a+jbe-σtexponential decaye±jωts=σsinusoidss=±jωe-σ±jωtexponential sinusoidss=-σ ±jωLinear TimeInvariantSystemx(t)=sin(ωt)y(t)=A sin(ωt+φ)characteristic functions of LTI systemsoutput has same frequency as inputbut is scaled and phase shifted€ cosθ=ejθ+ e−jθ2Complex Exponential Signalssine oddy(θ)=y(θ +2πn)θ(rad) y1=sin(θ)0π/6π /4π /3Periodicsin(-θ)=sin(θ)cosine evencos(-θ)=-cos(θ)π /2π3π/22π0.50.7070.86610−10y2=cos(θ)10.8660.7070.50−101Sinusoidsθ=θ(t)ω: radian frequency (radians/sec)f: frequency (cycles/sec-Hz)ω=2πfT:period (sec/cycle)T = 1/f= 2π/ωrad/sec= (2π rad/cycle)*cycle/secsec/cycle= 1/ (cycle/sec)= (2π rad/cycle)/(rad/sec)A: amplitudeφ: phase (radians)orParameters:Relations:y(t)=A sin(ωt+φ)y(t)=A sin(2πft+φ)y(t)=y(t+T)Continuous sinusoidsContinuous sinusoidsθ=θ(t)ω: radian frequency (radians/sec)f: frequency (cycles/sec-Hz)A: amplitudeφ: phase (radians)orParameters:y(t)=A sin(ωt+φ)y(t)=A sin(2πft+φ)Phase shiftIn: x(t)=1sin(t)Out: y(t)=0.5sin(t-π/3)x(0)=0y(π/3)=0(t- π/3)delay of π/3plot moves to the right€ y n[ ]= sin(2π⋅150⋅ n)0 10 20 30 40 50 60 70 80 90 100-1-0.8-0.6-0.4-0.200.20.40.60.81n - samplesy[n]=cos(2*pi*n/50)TextEndsampled continuous sinusoids€ y(t) = sin( 2πt)€ Ts=150sec€ t = nTs€ y n[ ]= sin(π25⋅ n)Discrete SinusoidContinuous SinusoidSample rate:n01234y[n]00.1250.2490.3680.4818Sampled Continuous Sinusoidθ=θ[n]y[n]=A sin(ωn+φ)n=0, 1, 2…y[n]=A sin(2πfn+φ)A: amplitudeω: radian frequency (radians/sample)φ: phase (radians)f: frequency (cycles/sample)ω=2πfN:period (samples/repeating cycle [integer])f = k/N (f: rational number -> k/N is ratio of integers)rad/sample= (2π rad/cycle)*cycle/sampleRelations:Smallest integer N such that y[n]=y[n+N]Find an integer k so N=k/f is also an integer € N ≠1fDiscrete sinusoids€ y n[ ]= sin(2π⋅150⋅ n)T=50 samples (integer)€ y n[ ]= y[n + 50]€ sin(0) = sin(2π)Period of a Discrete Sinusoid:ex1y[n]=cos(2π(3/16)n)y[n]=A cos(2πfn+φ)N:period (samples/repeating cycle [integer])f = k/N (rational number -> k/N is ratio of integers)Smallest integer N such that y[n]=y[n+N]f=3/16let k=3N=(3)*16/3=16Find an integer k so N=k/f is also an integer 0 5 10 15 20 25 30-1-0.8-0.6-0.4-0.200.20.40.60.81n - samplesy[n]=cos(2*pi*3/16*n)TextEndperiod of discrete sinusoidsfrequency: f=3/16 cycles/sampleWhat is the period N?ex:Period of discrete sinusoids: ex2€ y n[ ]= sin(2π⋅350⋅ n)N=?? samples N: integer € y n[ ]= y[n + N ]50/3 ≠ integer€ f =350cyclessample€ N ≠1fPeriod of discrete sinusoids: ex3.€ y n[ ]= sin(2π⋅350⋅ n)N=?? samples€ y n[ ]= y[n + N ]€ 350⋅ N = k€ Nk=503samplescycleratio of integersrational numberN=50 samples, k=3 cyclesperiodicdiscrete functionperiod:€ f =350cyclessecfrequency:€ f ⋅ N = kN, k:integersPeriod of discrete sinusoids: ex3.€ y n[ ]= sin(2π⋅225⋅ n)N=?? samples (integer) € y n[ ]= y[n + N ]€ Nk=25 22irrational numbersampled discrete sinusoid aperiodic0 0.5 1 1.5 2 2.5 3 3.5 4-1-0.8-0.6-0.4-0.200.20.40.60.81time (sec)y=sin(2*pi*sqrt(2)/25*n)TextEndirrational frequency€ y t( )= sin(2π⋅ 2 ⋅ t)€ T =12secperiodic€ f =225€ f ⋅ N = knot a ratio of integers€ Ts=125seccontinuous functionsample€ t = nTsdiscrete functionperiod?N,k: integersAperiodic discrete sinusoidsT:period (sec/cycle)arbitrary continuous signaly(t+Τ)=y(t)After what interval doesthe signal repeat itself? PeriodicityPeriod of Sum of Sinusoids€ y t( )= y t + T( )0 1 2 3 4 5 6-1-0.500.510 1 2 3 4 5 6-2-1012time (sec)Tsum=? secondsT1=0.2 seconds, T2=0.75 secondsEx: Period of sum of sinusoidsTsum=3 secondsT1=0.2s=1/5 seconds1/5*k=3/4*lk/l=15/44/20s, 8/20s, 12/20s,16/20s, 20/20s, 24/20s,28/20s, 32/20s, 36/20s,40/20s, 44/20s, 48/20s,52/20s, 56/20s, 60/20s15/20s. 30/20s,45/20s, 60/20s 15 cycles4 cycles1/5s, 2/5s, 3/5s …T2=0.75s=3/4 seconds3/4s, 6/4s, …Tsum=15*T1=15/5=3 secondsTsum=4*T2=3/4*4=3 secondsseconds to complete cyclesseconds to complete cyclesrational numberLeast common multipley(t)=A sin(ωt+φ)θ=θ(t)y(θ)=sin(θ)instantaneous frequencyω=dθ/dtθ=ωt+φdθ/dt=ωsinusoid constant frequencychirp linearly swept frequencyω=dθ/dtω =((ω1-ω0)/T)t +ω0θ =(ω1-ω0)/2T t2 +ω0t + Cychirp(t)=A sin((ω1-ω0) /(2T) t2 +ω0t + φ)time varying argumentt ω0 ω0 Τ ω1integrateInstantaneous frequencyy(t)=A cos(ωt+φ)X= Aejφcomplex amplitude (constant)€ y(t) = Aejφejωt+ e− jωt[ ]2y(t)=Re{Aejφej(ωt)}trig functioncomplex conjugatesreal part ofcomplex exponentialrotating phasorejθ=cos(θ)+jsin(θ)Euler’s relations€ cosθ=ejθ+ e−jθ2€ sinθ=ejθ− e−jθ2 jy(t)=Re{Xej(ωt)}€ ejθ( )= ejωt+φ( )= ejφejωtRepresentations of a sinusoidAdd spectrumAddition cartesianPowerspolarRootspolarpolarcartesian polar cartesians=a+jb s=rejθ€ s = a2+ b2ej⋅a tanba( )€ s = r cosθ+ jr sinθ€ a1+ jb1( )+ a2+ jb2( )= a1+ a2( )+ j b1+ b2( )Subtraction cartesianMultiplicationpolarDivisionpolar€ r1ejθ1⋅ r2ejθ2= r1r2ejθ1+θ2( )€ a1+ jb1( )− a2+ jb2( )= a1− a2( )+ j b1− b2( )€ r1ejθ1r2ejθ2=r1r2ejθ1−θ2( )€ rejθ( )n= rnejnθ€ zn= s = rejθ€ z = s1/ n= r1/ nejθ/ n +2πk / n( ) € k = 1,2Kn −1Complex ArithmeticComplex ConversionsTrigonometric manipulations -> algebraic operations on exponentsWhy use complex exponentials?Vector representation (graphical)Trigonometric identities€ cos(x)cos(y) =12cos x − y( )− cos x + y( )[ ][ ]€ cos2(x) =1+ cos 2x( )2rexey= rex+y(rex)n= rnenxProperties of exponentials€ xn= x1/ n€ 1x= x−1Complex ExponentialsComplex ExponentialsTrigonometric manipulations -> algebraic operations on exponentsWhy use complex exponentials?Adding sinusoids of same frequency but multiple amplitudes and phases A cos(ωt+φ1)+ B cos(ωt+φ2)= C cos(ωt+φ3)A [cos(ωt)cos(φ1 )- sin(ωt)sin(φ1 )] + B [cos(ωt)cos(φ2 )- sin(ωt)sin(φ2 )] -[Asin(φ1)+Bsin(φ2)] sin(ωt) + [Acos(φ1)+Bcos(φ2)] cos(ωt)or.A2...2 A B cos φ1 φ2 B2sin.ω t atan.A cos φ1.B cos φ2.A sin φ1.B sin φ2.A cos ω φ1.B cos ω φ2.Re..A ejφ1e..j ω t..B e.j φ2e..j ω t.Re..A ejφ1.B e.j φ2e..j ω t.Re..A cos φ1.j sin φ1.B cos φ2.j sin φ2 e..j ω t.Re..A cos φ1.B cos φ2.j.A sin φ1.B sin φ2 cos.ω t.j sin.ω t.Re..A


View Full Document

MIT MAS 160 - Linear Time Invariant Systems

Download Linear Time Invariant Systems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Linear Time Invariant Systems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Linear Time Invariant Systems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?