This preview shows page 1-2-3-4-30-31-32-33-34-61-62-63-64 out of 64 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 64 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

LTISystem€ y n[ ]€ x n[ ]Causal FIR filter€ y n[ ]€ x n[ ]Causal FIR filterQ:What is the definition of an FIR filter?A: The output y at each sample n is a weighted sum of the present input, x[n], and past inputs, x[n-1], x[n-2],…, x[n-M].Causal FIR filter€ y n[ ]= bkx n − k[ ]k= 0M∑ € y n[ ]= b0x n[ ]+ b1x n −1[ ]+ K + bMx n − M[ ]The output y at each sample n is a weighted sum of the present input, x[n], and past inputs, x[n-1], x[n-2],…, x[n-M].Block Diagramsx[n]unit delayy[n]=x[n-1]x[n]y[n]=Ax[n]€ Ax[n]y[n]=x[n]+z[n]+z[n]+Block Diagrams: Direct Form€ x n[ ]=δn[ ]= 0 0 1 0 0 0 0{ }€ h[n] = y n[ ]x[n ]=δ[n ]= 0 04828180 0{ }x[n]y[n]€ y n[ ]= bkx n − k[ ]k= 0M∑€ n = −2 −1 0 1 2 3 4€ b0,b1,b2{ }=48,28,18{ }€ = 0 0 b0b1b20 0{ }€ y n[ ]= b0x n[ ]+ b1x n −1[ ]+ b2x n − 2[ ]unit delayx[n-1]unit delayx[n-2]€ b0€ b1€ b2++++€ b0x n[ ]€ b1x n −1[ ]€ b2x n − 2[ ]L=3, M=L-1=2Block Diagrams: TransposeForm€ x n[ ]=δn[ ]= 0 0 1 0 0 0 0{ }€ h[n] = y n[ ]x[n ]=δ[n ]= 0 04828180 0{ }x[n]y[n]€ y n[ ]= bkx n − k[ ]k= 0M∑€ n = −2 −1 0 1 2 3 4€ b0,b1,b2{ }=48,28,18{ }€ = 0 0 b0b1b20 0{ }€ y n[ ]= b0x n[ ]+ b1x n −1[ ]+ b2x n − 2[ ]unit delay unit delay€ b0€ b1€ b2++++€ b2x n[ ]€ b1x n[ ]€ b0x n[ ]€ b2x n −1[ ]€ b2x n − 2[ ]+ b1x n −1[ ]Block Diagrams to Difference Equationsx[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v2n[ ]€ v1n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]Block Diagrams to Difference Equationsx[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v2n[ ]€ v1n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n −1[ ]= b1x n −1[ ]+ v2n − 2[ ]€ v2n − 2[ ]= b2x n − 2[ ]Block Diagrams to Difference Equationsx[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v2n[ ]€ v1n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n −1[ ]= b1x n −1[ ]+ b2x n − 2[ ]Block Diagrams to Difference Equationsx[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v2n[ ]€ v1n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]€ y n[ ]= b0x n[ ]+ b1x n −1[ ]+ b2x n − 2[ ]Block Diagrams to Difference Equationsx[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v2n[ ]€ v1n[ ]€ y n[ ]= b0x n[ ]+ v1n −1[ ]€ v1n[ ]= b1x n[ ]+ v2n −1[ ]€ v2n[ ]= b2x n[ ]€ y n[ ]= b0x n[ ]+ b1x n −1[ ]+ b2x n − 2[ ]€ h n[ ]= b0δn[ ]+ b1δn −1[ ]+ b2δn − 2[ ]difference equationimpulse responseequivalent waysof describing systemblock diagramBlock Diagrams to Difference Equations€ v2n[ ]€ y n[ ]= b0v2n[ ]+ b1v1n[ ]+ b2v1n −1[ ]€ v2n[ ]= x n[ ]x[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v1n[ ]€ v1n[ ]= v2n −1[ ]€ y n[ ]= b0v2n[ ]+ b1v1n[ ]+ b2v1n −1[ ]€ v1n[ ]= v2n −1[ ]€ v2n[ ]= x n[ ]Block Diagrams to Difference Equations€ v2n[ ]€ y n[ ]= b0v2n[ ]+ b1v1n[ ]+ b2v1n −1[ ]€ v2n[ ]= x n[ ]x[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v1n[ ]€ v1n[ ]= v2n −1[ ]€ y n[ ]= b0v2n[ ]+ b1v1n[ ]+ b2v1n −1[ ]€ v1n −1[ ]= v2n − 2[ ]€ v2n − 2[ ]= x n − 2[ ]€ v2n −1[ ]= x n −1[ ]€ v2n[ ]= x n[ ]€ v1n[ ]= v2n −1[ ]Block Diagrams to Difference Equations€ v2n[ ]€ y n[ ]= b0v2n[ ]+ b1v1n[ ]+ b2v1n −1[ ]€ v2n[ ]= x n[ ]x[n]y[n]unit delay unit delay€ b0€ b1€ b2++++€ v1n[ ]€ y n[ ]= b0x n[ ]+ b1x n −1[ ]+ b2x n − 2[ ]€ v1n[ ]= v2n −1[ ]Impulse response€ y n[ ]= bkx n − k[ ]k= 0M∑FIR filter€ x n[ ]=δ[n] =1 n = 00 otherwise   Delta function€ δ[n − k] =1 n = k0 otherwise   € y n[ ]= h[n] = bkδn − k[ ]k= 0M∑impulse response-2 -1 0 1 2 3 400.20.40.60.81x[n]TextEnd-2 -1 0 1 2 3 400.20.40.60.81nh[n]TextEnd€ x n[ ]=δn[ ]= 0 0 1 0 0 0 0{ }€ h[n] = y n[ ]x[n ]=δ[n ]= 0 04828180 0{ }Coefficients from impulse responsex[n]h[n]€ y n[ ]= bkx n − k[ ]k= 0M∑€ n = −2 −1 0 1 2 3 4€ b0,b1,b2{ }=48,28,18{ }€ = 0 0 b0b1b20 0{ }€ x n[ ]=δn[ ]= 0 0 1 0 1 0 0{ }€ y n[ ]=0 0482818+41628116{ }Response from 2 impulsesx[n]y[n]€ n = −2 −1 0 1 2 3 4-2 -1 0 1 2 3 400.20.40.60.81x[n]TextEnd-2 -1 0 1 2 3 400.20.40.60.81€ y n[ ]= bkx n − k[ ]k= 0M∑€ b0,b1,b2{ }=48,28,18{ }€ y n[ ]= 0 0 h 0[ ]x 0[ ]h 1[ ]x 0[ ]h 2[ ]x 0[ ]+ h 0[ ]x 2[ ]h 1[ ]x 2[ ]h 2[ ]x 2[ ]{ }Sum the responses ofeach impulse€ x n[ ]=δn[ ]= 0 0 1 0 1 0 0{ }€ y n[ ]=0 0482818+41628116{ }Response from 2 impulsesx[n]y[n]€ n = −2 −1 0 1 2 3 4-2 -1 0 1 2 3 400.20.40.60.81x[n]TextEnd-2 -1 0 1 2 3 400.20.40.60.81€ y n[ ]= bkx n − k[ ]k= 0M∑€ h[n] = b0,b1,b2{ }=48,28,18{ }€ y n[ ]= 0 0 h 0[ ]x 0[ ]h 1[ ]x 0[ ]h 2[ ]x 0[ ]+ h 0[ ]x 2[ ]h 1[ ]x 2[ ]h 2[ ]x 2[ ]{ }€ y n[ ]= h k[ ]x n − k[ ]k= 03∑€ y 2[ ]= h 0[ ]x 2 − 0[ ]+h 1[ ]x 2 −1[ ]+h 2[ ]x 2 − 2[ ]Convolution sum€ x n[ ]=n216⋅ u n[ ]€ u n[ ]=1 n ≥ 00 n < 0   -2 -1 0 1 2 3 400.10.20.30.40.50.60.70.80.91nx[n]TextEnd€ x n[ ]= 0 ⋅δn[ ]+116⋅δn −1[ ]+416⋅δn − 2[ ]+916⋅δn − 3[ ]+1616⋅δn − 4[ ]€ x n[ ]= 0 0 01164169161616{ }Any discrete signal be thought of a weighted sum of delayed impulses€ n = −2 −1 0 1 2 3 4Convolution € h[n] = y n[ ]x[n ]=δ[n ]=bnn = 0,1K M0 otherwise   € y n[ ]= bkx n − k[ ]k= 0M∑€ y n[ ]= h k[ ]x n − k[ ]k= 0M∑convolution sumThe output y[n] is equal to the input x[n] convolved withthe unit impulse response h[n].FIR filter€ y n[ …


View Full Document

MIT MAS 160 - Study Guide

Download Study Guide
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Guide and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Guide 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?