DOC PREVIEW
UCF PHY 2049C - Magnetic Field and Magnetic Forces

This preview shows page 1-2-3-26-27-28 out of 28 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 28 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Chapter 27 – Magnetic Field and Magnetic Forces- Magnetism- Magnetic Field- Magnetic Field Lines and Magnetic Flux- Motion of Charged Particles in a Magnetic Field- Applications of Motion of Charged Particles- Magnetic Force on a Current-Carrying Conductor- Force and Torque on a Current Loop1) A moving charge or collection of moving charges (e.g. electric current) produces a magnetic field. (Chap. 28).2) A second current or charge responds to the magnetic field andexperiences a magnetic force. (Chap. 27).1. MagnetismPermanent magnets: exert forces on each other as well as on unmagnetizedFe pieces. - The needle of a compass is a piece of magnetized Fe. - If a bar-shaped permanent magnet is free to rotate, one end points north (north pole of magnet).- An object that contains Fe is not by itself magnetized, it can be attracted by either the north or south pole of permanent magnet.- A bar magnet sets up a magnetic field in the space around it and a second body responds to that field. A compass needle tends to align with the magnetic field at the needle’s position.1. Magnetism- Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines.- Magnetic north and south pole’s behavior is not unlike electric charges.For magnets, like poles repel and opposite poles attract.- A permanent magnet will attract a metal like iron with either the north or south pole.Magnetic poles about our planet- We observed monopoles in electricity. A (+) or (-) alone was stable, and field lines could be drawn around it.- Magnets cannot exist as monopoles. If you break a bar magnet between N and S poles, you get two smaller magnets, each with its own N and S pole.Magnetic declination / magnetic variation: the Earth’s magnetic axis is not parallel to its geographic axis (axis of rotation)  a compass reading deviates from geographic north.Magnetic inclination: the magnetic field is not horizontal at most of earth’s surface, its angle up or down. The magnetic field is vertical at magnetic poles.Magnetic Poles versus Electric Charge-In 1820, Oersted ran experiments with conducting wires run near a sensitive compass. The orientation of the wire and the direction of the flow both moved the compass needle.- Ampere / Faraday / Henry  moving a magnet near a conducting loop can induce a current.- The magnetic forces between two bodies are due to the interaction between moving electrons in the atoms.- Inside a magnetized body (permanent magnet) there is a coordinated motion of certain atomic electrons. Not true for unmagnetized objects.2. Magnetic FieldElectric field:1) A distribution of electric charge at rest creates an electric field E in the surrounding space.2) The electric field exerts a force FE= q E on any other charges in presence of that field.Magnetic field:1) A moving charge or current creates a magnetic field in the surrounding space (in addition to E).2) The magnetic field exerts a force Fmon any other moving charge or current present in that field. - The magnetic field is a vector field  vector quantity associated with each point in space.ϕsinBvqBvqFm==⊥BvqFm×=- Fmis always perpendicular to B and v.2. Magnetic FieldInteraction of magnetic force and charge- The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the charge is perpendicular to the magnetic field.Right Hand RulePositive charge moving in magnetic field direction of force follows right hand ruleNegative charge  F directioncontrary to right hand rule.⊥= vBqFUnits: 1 Tesla = 1 N s / C m = 1 N/A m1 Gauss = 10-4 TRight Hand RuleIf charged particle moves in region where both, E and B are present:)( BvEqF×+=Measuring Magnetic Fields with Test Charges- In general, if a magnetic field (B) is present, the electron beam is deflected. However this is not true if the beam is // to B (φ = 0, π  F=0  no deflection).Ex: electron beam in a cathode X-ray tube.No deflection  F = 0  v // BDeflection  F ≠ 0  F ┴ v, BElectron q< 0 F has contrary direction to righthand rule- Magnetic field lines may be traced from N toward S (analogous to the electric field lines).- At each point they are tangent to magnetic field vector.- The more densely packed the field lines, the stronger the field at a point.- Field lines never intersect.3. Magnetic Field Lines and Magnetic Flux- The field lines point in the same direction as a compass (from N toward S).- Magnetic field lines are not “lines of force”.- Magnetic field lines have no ends  they continue through the interior of the magnet.Magnetic Flux and Gauss’s Law for Magnetism∫∫∫⋅=⋅==Φ⊥AdBdABdABBϕcos- Magnetic flux is a scalar quantity.- If B is uniform:ϕcosBAABB==Φ⊥0=⋅=Φ∫AdBBUnits: 1 Weber (1 Wb = 1 T m2 = 1 N m / A)- Difference with respect to electric flux  the total magnetic flux througha closed surface is always zero. This is because there is no isolatedmagnetic charge (“monopole”) that can be enclosed by the Gaussian surface. - The magnetic field is equal to the flux per unit area across an area at right angles to the magnetic field = magnetic flux density.⊥Φ=dAdBB4. Motion of Charged Particles in a Magnetic FieldBqmvR =BvqFm×=- Magnetic force perpendicular to v  it cannot change themagnitude of the velocity, only its direction. - F does not have a component parallel to particle’s motion  cannot do work.- Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed. - Magnitudes of F and v are constant (v perp. B)  uniformcircular motion.RvmBvqF2=⋅⋅=Radius of circular orbit in magnetic field: + particle  counter-clockwise rotation.- particle  clockwise rotation.A charged particle will move in a plane perpendicular to the magnetic field.- If v is not perpendicular to B  v//(parallel to B) constant because F//= 0 particle moves in a helix. (R same as before, with v = v┴).Cyclotron frequency: f = ω/2πAngular speed: ω = v/R mBqmvBqv ==ω5. Applications of Motion of Charged ParticlesVelocity selectorSource of charged particles- Particles of a specific speed can be selected from the beam using an arrangement of E and B fields.- Fm(magnetic) for + charge


View Full Document

UCF PHY 2049C - Magnetic Field and Magnetic Forces

Documents in this Course
Gauss Law

Gauss Law

14 pages

Load more
Download Magnetic Field and Magnetic Forces
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Magnetic Field and Magnetic Forces and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Magnetic Field and Magnetic Forces 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?