DOC PREVIEW
U of I CS 421 - Semantics

This preview shows page 1-2 out of 7 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 7 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Programming Languages andCompilers (CS 421)Elsa L Gunter2112 SC, UIUChttp://www.cs.uiuc.edu/class/sp07/cs421/Based in part on slides by Mattox Beckman, as updatedby Vikram Adve and Gul AghaElsa L. GunterSemantics• Expresses the meaning of syntax• Static semantics– Meaning based only on the form ofthe expression without executing it– Usually restricted to type checking /type inferenceElsa L. GunterDynamic semantics• Method of describing meaning ofexecuting a program• Several different types:–Operational Semantics–Axiomatic Semantics–Denotational SemanticsElsa L. GunterDynamic Semantics• Different languages bettersuited to different types ofsemantics• Different types of semanticsserve different purposesElsa L. GunterOperational Semantics• Start with a simple notion of machine• Describe how to execute (implement)programs of language on virtualmachine, by describing how to executeeach program statement (ie, followingthe structure of the program)• Meaning of program is how itsexecution changes the state of themachine• Useful as basis for implementationsElsa L. GunterAxiomatic Semantics• Also called Floyd-Hoare Logic• Based on formal logic (first orderpredicate calculus)• Axiomatic Semantics is a logicalsystem built from axioms andinference rules• Mainly suited to simple imperativeprogramming languagesElsa L. GunterAxiomatic Semantics• Used to formally prove a property(post-condition) of the state (the valuesof the program variables) after theexecution of program, assuminganother property (pre-condition) of thestate before execution• Written :{Precondition} Program {Postcondition}• Source of idea of loop invariantElsa L. GunterDenotational Semantics• Construct a function M assigning amathematical meaning to each programconstruct• Lambda calculus often used as the range of themeaning function• Meaning function is compositional: meaning ofconstruct built from meaning of parts• Useful for proving properties of programsElsa L. GunterDenotational Semantics• Construct a function M assigning amathematical meaning to each programconstruct• Meaning function is compositional:meaning of construct built from meaningof parts• Useful for proving properties of programsElsa L. GunterNatural Semantics• Aka Structural Operational Semantics,aka “Big Step Semantics”• Provide value for a program by rulesand derivations, similar to typederivations• Rule conclusions look like(C, m) ⇓ m’(E, m) ⇓ vElsa L. GunterSimple ImperativeProgramming Language• I ∈ Identifiers• N ∈ Numerals• B ::= true | false | B & B | B or B | not B| E < E | E = E• E::= N | I | E + E | E * E | E - E | - E• C::= skip | C;C | I ::= E| if B then C else C fi | while B do C odElsa L. GunterNatural Semantics of AtomicExpressions• Identifiers: (I,m) ⇓ m(I)• Numerals are values: (N,m) ⇓ N• Booleans: (true,m) ⇓ true (false ,m) ⇓ falseElsa L. GunterBooleans:(B, m) ⇓ false (B, m) ⇓ true (B’, m) ⇓ b(B & B’, m) ⇓ false (B & B’, m) ⇓ b (B, m) ⇓ true (B, m) ⇓ false (B’, m) ⇓ b(B or B’, m) ⇓ true (B or B’, m) ⇓ b(B, m) ⇓ true (B, m) ⇓ false(not B, m) ⇓ false (not B, m) ⇓ trueElsa L. GunterRelations(E, m) ⇓ U (E’, m) ⇓ V U ~ V = b(E ~ E’, m) ⇓ b• By U ~ V = b, we mean does (themeaning of) the relation ~ hold on themeaning of U and V• May be specified by a mathematicalexpression/equation or rules matchingU and VElsa L. GunterArithmetic Expressions(E, m) ⇓ U (E’, m) ⇓ V U op V = N(E op E’, m) ⇓ Nwhere N is the specified value for U op VElsa L. GunterCommandsSkip: (skip, m) ⇓ mAssignment: (E,m) ⇓ V (I::=E,m) ⇓ m[I <-- V ]Sequencing: (C,m) ⇓ m’ (C’,m’) ⇓ m’’ (C;C’, m) ⇓ m’’Elsa L. GunterIf Then Else Command(B,m) ⇓ true (C,m) ⇓ m’(if B then C else C’ fi, m) ⇓ m’(B,m) ⇓ false (C’,m) ⇓ m’(if B then C else C’ fi, m) ⇓ m’Elsa L. GunterWhile Command(B,m) ⇓ false(while B do C od, m) ⇓ m(B,m)⇓true (C,m)⇓m’ (while B do C od, m’)⇓m’’(while B do C od, m) ⇓ m’’Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 (2+3, {x->7})⇓5(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ?Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 (2+3, {x->7})⇓5(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7, y->5}Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 ? > ? = ? (2+3, {x->7})⇓5(x,{x->7})⇓? (5,{x->7})⇓? (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7, y->5}Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 7 > 5 = true (2+3, {x->7})⇓5(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓? ⇓{x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7, y->5}Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 7 > 5 = true (2+3, {x->7})⇓5(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓true ⇓{x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7, y->5}Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 7 > 5 = true (2+3, {x->7})⇓5(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓true ⇓ ? .(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7, y->5}Elsa L. GunterExample (2,{x->7})⇓2 (3,{x->7}) ⇓3 7 > 5 = true (2+3, {x->7})⇓?(x,{x->7})⇓7 (5,{x->7})⇓5 (y:= 2 + 3, {x-> 7} (x > 5, {x -> 7})⇓true ⇓ ? {x- >7, y->5}(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, {x -> 7}) ⇓ ? {x->7,


View Full Document

U of I CS 421 - Semantics

Documents in this Course
Lecture 2

Lecture 2

12 pages

Exams

Exams

20 pages

Lecture

Lecture

32 pages

Lecture

Lecture

21 pages

Lecture

Lecture

15 pages

Lecture

Lecture

4 pages

Lecture

Lecture

68 pages

Lecture

Lecture

68 pages

Lecture

Lecture

84 pages

s

s

32 pages

Parsing

Parsing

52 pages

Lecture 2

Lecture 2

45 pages

Midterm

Midterm

13 pages

LECTURE

LECTURE

10 pages

Lecture

Lecture

5 pages

Lecture

Lecture

39 pages

Load more
Download Semantics
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Semantics and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Semantics 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?