DOC PREVIEW
MIT 8 01T - Applying Newton’s Second Law

This preview shows page 1-2-3-27-28-29 out of 29 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 29 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Applying Newton’s Second Law 8.01T Sept 22, 2004Reference Frame Coordinate system with an observer placed at origin is a ‘reference frame’ in which the position, velocity, and acceleration of objects are mathematically definedRelative Reference Frames • Two reference frames • Origins need not coincide • Moving object • Position vectors in different frames G GGR r =+r2 1Relatively Inertial Reference Frames Relative velocity between the two reference frames is constant G = ddt G V R The relative acceleration is zero GG G A = dV dt = 0 Frames are called relatively inertial reference framesLaw of Addition of Velocities Suppose object is moving, then observers in different reference frames will measure different velocities 1 1=v rGddt G • velocity of the object in Frame 1: G 2 = d 2rGdt • velocity of the object in Frame 2: v • velocity of an object in two different reference frames G G G V + v = 1v 2Acceleration in Relatively Inertial Reference Frames Suppose object is accelerating, then observers in different relatively reference frames will measure the same acceleration G • acceleration of the object in Frame 1: a1 = dv G 1 dt G • acceleration of the object in Frame 2: a2 = dv G 2 dt GG G • Relative acceleration of frames is zero A = dV dt = 0 G• acceleration of an object in two different a G 1 = A + a G 2 = a G 2reference framesNewton’s First Law: Law of Inertia Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it Application: Newton’s Second Law in either frame isGGTF1 = ma G 1 F2 T = ma G 2 Relatively inertial reference frames have same accelerations. GG = a2a1 G G So use the same forces F1 T = F2 T So it does not matter which frame you choose to describe the problem.Principle of Relativity For observers moving in two different reference frames,no mechanical force can distinguish which observer is atrest and which observer is moving Einstein extended this to all physical phenomena. The laws of physics are the same in all relatively inertialreference frames, In particular, Einstein extended the Galilean principle ofrelativity to electromagnetism and optics which describethe theory of lightIn-Class Problem 7: Law of Addition of Velocities Suppose two cars, Car A, and Car B, are traveled along roads that are perpendicular to each other. An observer is at rest with respect to the ground. A second observer is in Car A. According to the observer on the ground, CarG A is moving with a velocity vA = vA ˆj , and Car B is moving with a magnitude of velocity v. G B = vBˆi . What is the velocity of Car B according to the observer in Car A? Express your answer both as components of the velocity vector, and direction and magnitude of the velocity vector.Tension Consider a rope pulling a mass. How do we define `tension’ in a rope? Force Diagram on RopeTension: Massless Rope • Assumption: Assume that the mass of the rope is small so that we can ignore all y-components of the applied force and the force of the object on the rope. Rope: = m a , , Fapplied − Frope mass r r x Object: total total , Fx = Fmass rope − fkinetic Fy= N − mg = 0Equations of Motion Friction Force Law: fkinetic =µ kN GG F =− F , ,Newton’s Third Law: mass rope rope mass F = F , ,rope mass mass rope Newton’s Second Law: F −µ mg = ma ,,mass rope k m x = m a , , Fapplied − Fmass rope r r x Inextensible Rope Assumption: a = a ≡ a , ,mx r xSpecial Cases 1. Pulling the object at a constant velocity: a = 0 2. Rope is essentially massless:mr≅ 0 , Fapplied − Fmass rope = 0 Pulling force is transmitted through the ropeTension in a Rope The tension in a rope at a distance x from one end of the rope is the magnitude of the action -reaction pair of forces acting at that point , G G ()=Tx x = x , Fleft right () , Fright left ()Constraint Condition in Pulley Systems Consider the arrangement ofpulleys and objects shown inthe figure. Draw forcediagrams on each object. How are the accelerations of the objects related? Solve for the accelerations pfthe objects and the tensions inthe ropes.Force Law: Newtonian Induction • Definition of force has no predictive content • Need to measure the acceleration and the mass in order to define the force • Force Law: Discover experimental relation betweenforce exerted on object and change in properties ofobject • Induction: Extend force law from finite measurements to all cases within some range creating a model • Second Law can now be used to predict motion! • If prediction disagrees with measurement adjust model.Experiment 03: Modeling ForcesExperiment 03: Modeling ForcesGoal  Use DataStudio to plot and analyze the force that two magnets exert on one another as a function of the distance between them.  Use linear, semi-log, and log-log graphs to gain some insight into how the force varies with separation.  Find a mathematical function that describes this force, a “force law”.Experimental setup h Measuring the magnet gap h2-1  Measure heights h1 and h2 with your ruler, and subtract them. (h1 will be constant.)  The two magnets stuck together weigh 6.0 pennies. The plastic coin holder weighs 4.0 pennies.  Enter the gap (in mm) and the total weight (in pennies) into a table in DataStudio.  The gap goes in the X (left) column of the table.Starting DataStudio  Choose the “Enter Data” option.Making a table I  A table and a graph will appear. Close the graph window (removes it). Drag the table borders to make it smaller.  Click the “Summary” button to open the “Data” and “Displays” windows.  Double-click “Editable Data” in the Data window. This opens a “Data Properties” window…Making a table II  Choose a title for the data set.  Pick names and units of the X and Y variables.Making a table III  Type in your measurements, gap in the left (X) column and force in the right (Y) column.  To plot them, drag the “Force vs.Gap” entry in the Data window onto “Graph” in the Displays window.Exponential fit  Carry out a user-defined fit of:  Record A and C for part (a) and answer question about the characteristic length l over which the force drops by a factor 1/eSemi-log plot and linear fit I  Click the “Calculate” button.  In the calculator definition window type lnF = ln(y)


View Full Document

MIT 8 01T - Applying Newton’s Second Law

Documents in this Course
Momentum

Momentum

24 pages

TEAL

TEAL

18 pages

Vectors

Vectors

18 pages

Load more
Download Applying Newton’s Second Law
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Applying Newton’s Second Law and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Applying Newton’s Second Law 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?