Unformatted text preview:

TodayMultiple linear regressionModelDesign matrixFitting the model: SSESolving for "0362Multivariate normalMultivariate normalProjectionsProjectionsIdentity covariance, projections & 2Properties of multiple regression estimates- p. 1/13Statistics 203: Introduction to Regressionand Analysis of VarianceMultiple Linear Regression + MultivariateNormalJonathan Taylor●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 2/13Today■Multiple linear regression■Some proofs: multivariate normal distribution.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 3/13Multiple linear regression■Specifying the model.■Fitting the model: least squares.■Interpretation of the coefficients.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 4/13Model■Basically, rather than one predictor, we more than onepredictor, say p − 1.■Yi= β0+ β1Xi1+ · · · + βp−1Xi,p−1+ εi■Errors (εi)1≤i≤nare assumed independent N(0, σ2), as insimple linear regression.■Coefficients are called (partial) regression coefficientsbecause they “allow” for the (partial) effect of other variables.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 5/13Design matrix■Define the n × p matrixX =1 X11X12. . . X1,p−1............1 Xn1Xn2. . . Xn,p−1and the column vectors Xj= (X1j, . . . , Xnj).■Model can be expressed asY = Xβ + ε.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 6/13Fitting the model: SSE■Just as in simple linear regression, model is fit by minimizingSSE(β0, . . . , βp) =nXi=1(Yi− (β0+pXj=1βjXij))2.■Minimizers:bβ = (bβ0, . . . ,bβp) are the “least squaresestimates” and are also normally distributed as in simplelinear regression.■Explicit expression when X is full rank (next slide)bβ = (XtX)−1XtY.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 7/13Solving forbβ■Normal equations∂∂βjSSEbβ= −2Y − XbβtXj= 0, 0 ≤ j ≤ p − 1.■Equivalent to(Y − Xbβ)tX = 0YtX =bβt(XtX)XtY = (XtX)bβbβ = (XtX)−1XtY■Properties: after some facts about multivariate normalrandom vectors.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 8/13Multivariate normal■Z = (Z1, . . . , Zn) ∈ Rnis multivariate Gaussian if, for everyα = (α1, . . . , αn) ∈ Rn, hα, Zi =Pni=1αiZiis Gaussian.■Mean vector: µ ∈ Rnhas componentsµi= E(Zi).■Covariance matrix: Σ a non-negative definite n × n matrixΣij= Cov(Zi, Zj).■Non-negative (positive) definite: for any α ∈ RnαtΣα ≥ (>)0.■We write Z ∼ N(µ, Σ).●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 9/13Multivariate normal■For any m × n matrix AAZ ∼ N (Aµ, AΣAt).■If Σ is positive definite then the density of Z isfZ(z) = (2π)−n/2|Σ|−1/2e−(z−µ)tΣ−1(z−µ)/2.■If Σ is only non-negative definite (i.e. rank of Σ < n) then Zlives on a lower dimensional space and has no density onRn.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 10/13Projections■If an n × n matrix P satisfies◆P2= P (idempotent)◆P = Pt(symmetric)then P is a projection matrix.■That is, there exists a subspace L ⊂ Rnof dimension r ≤ nsuch that for any z ∈ RnP z is the projection of z onto L. Wewrite PLto denote the subspace L projects onto.■Given any orthonormal basis {w1, . . . , wr} of LPLz =rXj=1hz, wjiwj.■If PLis a projection matrix thenI − PL= PL⊥is also a projection matrix which projects onto L⊥, theorthogonal complement of L in Rn.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 11/13Projections■Let {X1, . . . , Xr} be a set of linearly independent vectors inRnandX =X1X2. . . Xris the n × r matrix made by “concatenating” the Xi’s.■IfL = span(X1, . . . , Xr)is the subspace of Rnspanned by {X1, . . . , Xr} thenPL= X(XtX)−1Xt.●Today●Multiple linear regression●Model●Design matrix●Fitting the model: SSE●Solving forbβ●Multivariate normal●Multivariate normal●Projections●Projections●Identity covariance,projections &χ2●Properties of multipleregression estimates- p. 12/13Identity covariance, projections & χ2■If Σ = σ2I and L is a subspace of RnthenPLZ ∼ N (PLµ, σ2PL)where PLis the projection matrix onto L.■If PLµ = 0 thenkPLZk2∼ χ2dim(L)anddim(L) = Tr(PL).■If PLµ 6= 0 thenkPLZk2∼ χ2dim(L),kPLµk2has a non-central χ2distribution.●Today●Multiple linear regression●Model●Design


View Full Document

Stanford STATS 203 - Lecture Notes

Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?