DOC PREVIEW
Stanford STATS 203 - Multiple Linear Regression- Inference and Polynomial

This preview shows page 1-2-3-4-5 out of 16 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 16 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

TodaySummary of last classR2 for multiple regressionAdjusted R2Inference in multiple regressionTesting H0:2=0Testing H0:2=0Some detailsOverall goodness of fitDropping subsetsGeneral linear hypothesisAnother fact about multivariate normalPolynomial modelsPolynomial modelsSpline models- p. 1/16Statistics 203: Introduction to Regressionand Analysis of VarianceMultiple Linear Regression: Inference &PolynomialJonathan Taylor●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 2/16Today■Inference: trying to “reduce” model.■Polynomial regression.■Splines + other bases.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 3/16Summary of last class■Yn×1= Xn×pβp×1+ εn×1■bY = HY, H = X(XtX)−1Xt■e = (I − H)Y■kek2∼ σ2χ2n−p■Generally, if P is a projection onto a subspace˜L such thatP (Xβ) = 0, thenkP Y k2= kP (Xβ + ε)k2= kP εk2∼ σ2χ2dim˜L.●Today●Summary of last class●R2for multiple regression●Adjusted R2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 4/16R2for multiple regressionSSE =nXi=1(Yi−bYi)2= kY −bY k2SSR =nXi=1(Y −bYi)2= kbY − Y 111k2SST =nXi=1(Yi− Y )2= kY − Y 111k2R2=SSRSST●Today●Summary of last class●R2for multiple regression●Adjusted R2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 5/16Adjusted R2■As we add more and more variables to the model – evenrandom ones, R2will go to 1.■Adjusted R2tries to take this into account by replacing sumsof squares by “mean” squaresR2a= 1 −SSE/(n − p)SST/(n − 1)= 1 −MSEMST.■Here is an example.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●Testing H0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 6/16Inference in multiple regression■F -statistics.■Dropping a subset of variables.■General linear hypothesis.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●Testing H0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 7/16Testing H0: β2= 0■Can be tested with a t-test:T =bβ2SE(bβ2).■Alternatively, using an F -test with a “full” and “reduced”model◆(F) Yi= β0+ β1Xi1+ β2Xi2+ εi◆(R) Yi= β0+ β1Xi1+ εi■F -statistic: under H0: β2= 0SSEF= kY −bYFk2∼ σ2χ2n−3SSER= kY −bYRk2∼ σ2χ2n−2SSEF− SSER= kbYF−bYRk2∼ σ2χ21and SSEF− SSERis independent of SSEF(see details).●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 8/16Testing H0: β2= 0■Under H0F =(SSEF− SSER)/1SSEF/(n − 3)∼ F1,n−3.■Reject H0at level α if F > F1,n−3,1−α.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 9/16Some details■SSEF∼ σ2χ2n−3if the full model is correct, andSSER∼ σ2χ2n−2if H0is correct becauseHFY = HF(Xβ + ε) = Xβ + HFεHRY = HR(Xβ + ε) = Xβ + HRε ( under H0)If H0is false SSERis σ2times a non-central χ2n−2.■Why is SSER− SSEFindependent of SSEF?SSER− SSEF= kY − HRY k2− kY − HFY k2= kHRY − HFY k2(Pythagoras)= kHRε − HFεk2( under H0)(HR− HF)ε is in LF, the subspace of the full model whileeF= (I − HF)ε is in L⊥Fthe orthogonal complement of thefull model – therefore eFis independent of (HR− HF)ε.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 10/16Overall goodness of fit■TestingH0: β1= β2= 0.■Two models:◆(F) Yi= β0+ β1Xi1+ β2Xi2+ εi◆(R) Yi= β0+ εi■F -statistic, under H0:F =(SSER− SSEF)/2SSEF/(n − 3)=k(HR− HF)Y k2/2k(I − HF)Y k2/(n − 3)∼ F2,n−3.■Reject H0if F > F1−α,2,n−3.■Details: same as before.●Today●Summary of last class●R2for multiple regression●AdjustedR2●Inference in multipleregression●TestingH0: β2= 0●Testing H0: β2= 0●Some details●Overall goodness of fit●Dropping subsets●General linear hypothesis●Another fact aboutmultivariate normal●Polynomial models●Polynomial models●Spline models- p. 11/16Dropping subsets■Suppose we have the modelYi= β0+ β1Xi1+ · · · + βp−1Xi,p−1+ εiand we want to test whether we can simplify the model bydropping variables, i.e. testingH0: βj1= · · · = βjk= 0.■Two models:◆(F) – above◆(R) – model with columns Xj1, . . . , Xjkomitted from thedesign matrix.■Under H0F =(SSER− SSEF)/(dfR− dfF)SSEF/dfF∼ FdfR−dfF,dfFwhere dfFand dfRare the “residual” degrees of


View Full Document

Stanford STATS 203 - Multiple Linear Regression- Inference and Polynomial

Download Multiple Linear Regression- Inference and Polynomial
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Multiple Linear Regression- Inference and Polynomial and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Multiple Linear Regression- Inference and Polynomial 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?