DOC PREVIEW
OSU CS 419 - Modeling the World as a Mesh of Springs

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Modeling the World as a Mesh of SpringsMike [email protected] State Universitymjb – November 4, 2014Oregon State UniversityComputer Graphicsmeshofsprings.pptxSolving for Motion where there is a Spring0()springFky D+y, +Fmjb – November 4, 2014Oregon State UniversityComputer GraphicsWeight0()FWkyDvt tmm  2Modeling a String as a Group of Masses Connected by Springs+Y+y0“Lumped Masses”+y1mjb – November 4, 2014Oregon State UniversityComputer Graphics+y2Computing Forces in 1Di-1+yi-1Generalize by using indices:110()ii i iFkY Y D ii-1+yimjb – November 4, 2014Oregon State UniversityComputer GraphicsgFMassGravity110()ii i iFkY Y D i+1+yi+13Computing Forces in 2Di-1110()ii iiFkD D +Y+Xi1ˆiiV1ˆiiV11, 1 1 11cosiiiix ii ii iiiixxFF FD   X:Y:11, 1 1 11siniiiix ii ii iiiiyyFF FD   mjb – November 4, 2014Oregon State UniversityComputer Graphicsi+1110()ii iiFkD D gFMassGravity11, 1 1 11cosiiiix ii ii iiiixxFF FD   X:Y:11, 1 1 11siniiiix ii ii iiiiyyFF FD   From the Physics Notes:What does a Second Order solution look like in a Program?voidAdvanceOneTimeStep( ){GtD i(St t D i ti 1)GetDerivs( State, Derivatives1);State2.t = State.t + ∆t;State2.x = State.x + Derivatives1.vx * ∆t;State2.vx = State.vx + Derivatives1.ax * ∆t;GetDerivs( State2, Derivatives2 );aavg = ( Derivatives1.ax + Derivatives2.ax) / 2.;vavg = ( Derivatives1.vx + Derivatives2.vx) / 2.;State.x = State.x + vavg * ∆t;State vx=State vx+aavg*∆t;mjb – November 4, 2014Oregon State UniversityComputer GraphicsState.vx= State.vx+ aavg ∆t;State.t = State.t + ∆t ;}4Solve for Each State as a Whole, not as Individual Links:Do it this Wayfor( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs( Links, i, &vx1[i], &vy1[i], &ax1[i], &ay1[i] );}Correct Second Order solution:Get allthe velocities and accelerations first} for( int i = 0; i < NUMLINKS; i++ ){ TmpLinks[i].vx = Links[i].vx + DT * ax1[i];TmpLinks[i].vy = Links[i].vy + DT * ay1[i];TmpLinks[i].x = Links[i].x + DT * vx1[i];TmpLinks[i].y = Links[i].y + DT * vy1[i];}for( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs(TmpLinksi&vx2[i] &vy2[i] &ax2[i] &ay2[i]);Apply allthe velocities and accelerationsGet allthe velocities and mjb – November 4, 2014Oregon State UniversityComputer GraphicsGetOneBodysDerivs( TmpLinks, i, &vx2[i], &vy2[i], &ax2[i], &ay2[i] );} for( int i = 0; i < NUMLINKS; i++ ){ Links[i].vx = Links[i].vx + DT * ( ax1[i] + ax2[i] ) / 2.;Links[i].vy = Links[i].vy + DT * ( ay1[i] + ay2[i] ) / 2.;Links[i].x = Links[i].x + DT * ( vx1[i] + vx2[i] ) / 2.; Links[i].y = Links[i].y + DT * ( vy1[i] + vy2[i] ) / 2.; } accelerations firstApply allthe velocities and accelerationsSolve for Each State as a Whole, not as Individual Links:Do it this Wayfor( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs( Links, i, &vx1[i], &vy1[i], &ax1[i], &ay1[i] );} C Extensions for Array Notion (CEAN) makes it look cleaner, and possibly more efficient:TmpLinks[ 0 : NUMLINKS ].vx = Links[ 0 : NUMLINKS ].vx + DT * ax1[ 0 : NUMLINKS ];TmpLinks[ 0 : NUMLINKS ].vy = Links[ 0 : NUMLINKS i].vy + DT * ay1[ 0 : NUMLINKS ];TmpLinks[ 0 : NUMLINKS ].x = Links[ 0 : NUMLINKS ].x + DT * vx1[ 0 : NUMLINKS ];TmpLinks[ 0 : NUMLINKS ].y = Links[ 0 : NUMLINKS ].y + DT * vy1[ 0 : NUMLINKS ];for( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs( TmpLinks, i, &vx2[i], &vy2[i], &ax2[i], &ay2[i] );} Links[ 0 : NUMLINKS ]vx=Links[ 0 : NUMLINKS ]vx+DT*(ax1[ 0 : NUMLINKS ]+ax2[ 0 : NUMLINKS ])/2;mjb – November 4, 2014Oregon State UniversityComputer GraphicsLinks[ 0 : NUMLINKS ].vx= Links[ 0 : NUMLINKS ].vx+ DT ( ax1[ 0 : NUMLINKS ] + ax2[ 0 : NUMLINKS ] ) / 2.;Links[ 0 : NUMLINKS ].vy = Links[ 0 : NUMLINKS ].vy + DT * ( ay1[ 0 : NUMLINKS ] + ay2[ 0 : NUMLINKS ] ) / 2.;Links[ 0 : NUMLINKS ].x = Links[ 0 : NUMLINKS ].x + DT * ( vx1[ 0 : NUMLINKS ] + vx2[ 0 : NUMLINKS ] ) / 2.; Links[ 0 : NUMLINKS ].y = Links[ 0 : NUMLINKS ].y + DT * ( vy1[ 0 : NUMLINKS ] + vy2[ 0 : NUMLINKS ] ) / 2.;5voidGetOneBodysDerivs( array, node, float *vxi, float *vyi, float *axi, float *ayi ){float xm, ym; // vector from node to previous node (up the chain)float xp, yp; // vector from node to next node (down the chain)float sumfx = 0.;fl tfWihtGetLinkVelAcc( ), Ifloat sumfy= -Weight;if( node == 0 ){xm = X0 - array[node].x; // (X0,Y0) is the top of the chainym = Y0 - array[node].y;}else{xm = array[node-1].x - array [node].x;ym = array[node-1].y - array [node].y;mjb – November 4, 2014Oregon State UniversityComputer Graphics}float length = sqrt( xm*xm + ym*ym ); // length of the springxm /= length; // normalize the vectorym /= length;float stretch = length - D0; // amount the spring is stretchedfloat force = K * stretch;sumfx += force * xm;sumfy += force * ym; if( node < NUMLINKS-1 ){xp = array [node+1].x - array[node].x;yp = array [node+1].y - array [node].y;length = sqrt( xp*xp + yp*yp );GetLinkVelAcc( ), IIxp /= length;yp /= length;stretch = length - D0;force = K * stretch;sumfx += force * xp;sumfy += force * yp;}sumfx -= Cd * array[node].vx; // dampingsumfy -= Cd * array[node].vy;mjb – November 4, 2014Oregon State UniversityComputer Graphics*vx = array[node].vx;*vy = array[node].vy;*ax = sumfx / Mass;*ay = sumfy / Mass;}6for( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs( Links, i, &vx1[i], &vy1[i], &ax1[i], &ay1[i] );TmpLinks[i]vx=Links[i]vx+DT*ax1[i];Don’t do it this Way!Incorrect Second Order solution:TmpLinks[i].vx Links[i].vx DT ax1[i];TmpLinks[i].vy = Links[i].vy + DT * ay1[i];TmpLinks[i].x = Links[i].x + DT * vx1[i];TmpLinks[i].y = Links[i].y + DT * vy1[i];}for( int i = 0; i < NUMLINKS; i++ ){ GetOneBodysDerivs( TmpLinks, i, &vx2[i], &vy2[i], &ax2[i], &ay2[i] );Links[i].vx = Links[i].vx + DT * ( ax1[i] + ax2[i] ) / 2.;Links[i].vy = Links[i].vy + DT * ( ay1[i] + ay2[i] ) / 2.;Links[i]x=Links[i] x + DT * ( vx1[i] + vx2[i])/2;mjb – November 4, 2014Oregon State UniversityComputer GraphicsLinks[i].x = Links[i].x + DT * ( vx1[i] + vx2[i] ) / 2.; Links[i].y = Links[i].y + DT * ( vy1[i] +


View Full Document

OSU CS 419 - Modeling the World as a Mesh of Springs

Download Modeling the World as a Mesh of Springs
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Modeling the World as a Mesh of Springs and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Modeling the World as a Mesh of Springs 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?