DOC PREVIEW
Purdue MA 26100 - Study Guide

This preview shows page 1-2 out of 6 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 6 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

MA 261 - Spring 2010Study Guide # 31. Cylindrical Coordinates (r, θ, z):From CC to RC :x = r cos θy = r sin θz = zxzzy(x,y,z)0θrGoing from RC to CC use x2+ y2= r2and tan θ =yx(make sure θ is in correct quadrant).2. Spherical Coordinates (ρ, θ, φ), where 0 ≤ φ ≤ π:From SC to RC :x = (ρ sin φ) cos θy = (ρ sin φ) sin θz = ρ cos φxzy(x,y,z)0θφρρ cos φφsinρGoing fr om RC to SC use x2+ y2+ z2= ρ2, tan θ =yxand cos φ =zρ.3. Triple integrals in Cylindrical Coordinates:x = r cos θy = r sin θz = z, dV = r dz dr dθZZZEf(x, y, z) dV =ZZZEf(r cos θ, r sin θ, z) r dz dr dθ↑4. Triple integrals in Spherical Coordinates:x = (ρ sin φ) cos θy = (ρ sin φ) sin θz = ρ cos φ, dV = ρ2sin φ dρ dφ dθZZZEf(x, y, z) dV =ZZZEf(ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) ρ2sin φ dρ dφ dθ↑5. Vector fields on R2and R3:~F(x, y) = hP (x, y), Q(x, y)i and~F(x, y, z) = hP (x, y), Q(x, y), R(x, y)i;~F is a conservative vector field if~F = ∇f, for some real-valued function f.16. Line integral of a function f(x, y) along C, parameterized by x = x(t), y = y(t) and a ≤ t ≤ b, isZCf(x, y) ds =Zbaf(x(t), y(t))sdxdt2+dydt2dt .(independent of orientation of C, other pro perties and applications of line integrals of f)Remarks:(a)ZCf(x, y) ds is sometimes called the “lin e integral of f with respect to arc length”(b)ZCf(x, y) dx =Zbaf(x(t), y(t)) x′(t) dt(c)ZCf(x, y) dy =Zbaf(x(t), y(t)) y′(t) dt7. Line integral of vector field~F(x, y) along C, parameterized by~r(t) and a ≤ t ≤ b, is given byZC~F · d~r =Zba~F(~r(t)) ·~r′(t) dt .(depends o n orientation of C, other properties and applications of line integrals of f )8. Connection between line integral of vector fields and line integral of functions:ZC~F · d~r =ZC(~F ·~T) dswhere~T is the unit t angent vector to the curve C.9. If~F(x, y) = P (x, y)~i + Q(x, y)~j, thenZC~F · d~r =ZCP (x, y) dx + Q(x, y) dy ; Work =ZC~F · d~r.10. Fundamental Theorem of Calculus for Line Integrals:ZC∇f·d~r = f(~r(b))−f(~r(a)):Cr(b)r(a)11. A vector field~F(x, y) = P (x, y)~i + Q(x, y)~j is conservative (i.e.~F = ∇f) if∂Q∂x=∂P∂y; how todetermine a potential function f if~F(~x) = ∇f (~x).12. Green’s Theorem:ZCP (x, y) dx + Q(x, y) dy =ZZD∂Q∂x−∂P∂ydA (C = boundary of D):DC213. Del Operator:∂∂x~i +∂∂y~j +∂∂z~k; if~F(x, y, z) = P (x, y, z)~i + Q(x, y, z)~j + R(x, y, z)~k, thencurl~F = ∇ ×~F =~i~j~k∂∂x∂∂y∂∂zP Q Rand div~F = ∇ ·~F =∂P∂x+∂Q∂y+∂R∂zProperties of curl and divergence:(i) If curl~F =~0, then~F is a conservative vector field (i.e.,~F(~x) = ∇f(~x)).(ii) If curl~F =~0, then~F is irrotational; if div~F = 0, then~F is incompressible.(iii) Laplace’s Equation: ∇2f =∂2f∂x2+∂2f∂y2+∂2f∂z2= 0.14. Parametric surface S:~r(u, v) = hx(u, v), y(u, v), z(u, v)i, where (u, v) ∈ D:DSnuvxyzr(u,v)Normal vector to surface S :~n =~ru×~rv; tangent planes and normal lines to parametric surfaces.15. Surface area of a surface S:(i) A(S) =ZZD|~ru×~rv| dA(ii) If S is the graph of z = f (x, y) above D, then A(S) =ZZDs1 +∂z∂x2+∂z∂y2dA;Remark: dS = |~ru×~rv| dA = differential of surface area; while d~S = (~ru×~rv) dA16. The surface integral of f(x, y, z) over the surface S:(i)ZZSf(x, y, z) dS =ZZDf(~r(u, v)) |~ru×~rv| dA.(ii) If S is the graph of z = h(x, y) above D, thenZZSf(x, y, z) dS =ZZDf(x, y, h(x, y))s1 +∂z∂x2+∂z∂y2dA.317. The surface integral of~F over the surface S (recall, d~S = (~ru×~rv) dA):ZZS~F · d~S =ZZD~F · (~ru×~rv) dA.ZZS~F · d~S =ZZS(~F ·~n) dS =ZZD~F · (~ru×~rv) dA.(i) Connection between surface integral of a vector field and a function:ZZS~F · d~S =ZZS(~F ·~n) dS.(The above gives another way to computeRRS~F · d~S)(ii)ZZS~F · d~S =ZZS(~F ·~n) dS = fluxof~F across the surface S.Sn18. Stokes’ Theorem:ZC~F · d~r =ZZScurl~F · d~S (recall, curl~F = ∇ ×~F).nSCZC~F · d~r = circulation of~F around C.19. The Divergence Theorem/Gauss’ Theorem:ZZS~F · d~S =ZZZEdiv~F dV(recall, div~F = ∇ ·~F).SEnnnn420. Summary of Line Integrals a nd Surface Integrals:Line Integrals Surface IntegralsC :~r(t), where a ≤ t ≤ b S :~r(u, v), where (u, v) ∈ Dds = |~r′(t)| dt = differential o f arc length dS = |~ru×~rv| dA = differential of surface areaZCds = length of CZZSdS = surface area of SZCf(x, y, z) ds =Zbaf(~r(t)) |~r′(t)| dtZZSf(x, y, z) dS =ZZDf(~r(u, v)) |~ru×~rv| dA(independent of orientation of C ) (independent of normal vector~n)d~r =~r′(t) dt d~S = (~ru×~rv) dAZC~F · d~r =Zba~F(~r(t)) ·~r′(t) dtZZS~F · d~S =ZZD~F(~r(u, v)) · (~ru×~rv) dA(depends o n orientation of C) (depends o n normal vector~n)ZC~F · d~r =ZC~F ·~TdsZZS~F · d~S =ZZS~F ·~ndSThe circulation of~F around C The flux of~F across S in direction~n521. Integration Theorems:Fundamental Theorem of Calculus:ZbaF′(x) dx = F (b) − F (a)baFundamental Theorem of Calculus For Line Integrals:Zba∇f·d~r = f(~r(b))−f(~r(a))Cr(b)r(a)Green’s Theorem:ZZD∂Q∂x−∂P∂ydA =ZCP (x, y) dx + Q(x, y) dyDCStokes’ Theorem:ZZScurl~F · d~S =ZC~F · d~rnSCDivergence Theorem:ZZZEdiv~F dV =ZZS~F ·


View Full Document

Purdue MA 26100 - Study Guide

Download Study Guide
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Study Guide and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Study Guide 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?