DOC PREVIEW
Duke CPS 210 - Qualifying Exam

This preview shows page 1 out of 2 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 2 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

CPS$210$Qualifying$Exam$January$9,$2002$Answer$all$questions.$$Allocate$your$time$carefully.$$Your$answers$will$be$graded$on$content,$not$style.$$Any$kind$of$pseudocode$is$fine$as$long$as$its$meaning$is$clear.$$You$have$180$minutes.$Problem(1.((Show$how$to$emulat e $g eneral$(co u n t in g ) $se mapho re s $sa f el y $u si n g $b in a r y$semaphores.$Problem(2.""You$are$to$implement$the$core$of$a$process$manager$for$a$multiprogrammed$operating$system$kernel.$$The$process$manager$is$a$class$called$Process$that$track s $parent/child/sibling$relationship s$a m o n g$p ro ce sse s$as $ne ed e d,$an d $co o rd ina tes $th e$processMrelated$kernel$services$(e.g.,$the$fork,$exit,$and$wait$system $c a lls $in $Unix).$$Yo u r $solution$must$impleme nt$three$key$m ethods$to$ope rate$on$a$Process$object$p.$p1>Birth(Process*"parent)$registers$this$pro c e ss $p$as$a$child$o f$it s$p a r e n t.$p1>Death(int"status)$indicates$that$th is $p ro c e ss $p$has$exite d $with$the$sp e cif ie d $st a tu s .$int"status"="p 1>Join()$waits$for$p$to$e x it$( i.e .,$to $c a ll$Death),$and$returns$p’s $e x it$s ta t u s.$To"help"guide"your"solution.$$Write$only $what$yo u$need$t o $implement$th e s e $t h re e $methods,$assuming$the$following$context.$$Each$Process$object$P$has$a n $a ss o ci a te d $thread$that$animates $the$pro cess .$$The$threa d$bo un d$to$P$calls$Birth$and$Death$on$P"as$part$of$the$implem enta tion $o f$th e $sy ste m$calls$for$p ro ce ss $cr ea tio n $(e .g.,$fork )$and $destru ction$(e.g.,$exit).$$Join$on$P$ma y $b e $ca ll e d $o n ly $b y $the$threa d $b o u n d$to$the$p a r ent$of$P.$$Y o u$do$not$need$to$create$these$threads$or$enforce$these$restrictions;$they$are$intended$to$simplify$the$pr ob le m .$Required"synchronization."Death$on$P$blocks$u n til $(1 ) $th e $c h il d re n $o f $P$have$e x ite d ,$a n d $(2)$the$parent$of$P$h a s $e x ite d $o r $h a s$e x e c u te d $a $Jo in$o n $P.$$The$in t e n t $is $that$the$e x i t$status$and$process$object$for$P$m ay $be$safely $d e st ro y e d $a ft e r$Death$return s.$Be$sure$t h a t$your$solution$is$free$of$race$conditions,$deadlock,$and$dangling$references.$To$simplify$matters$I$suggest$that$you$use$a$single$mutex$and$condition$variable$for$your$synchronization.$$"You$may$assume$any$reasonable$set$of$list$primitives$if$their$meaning$is$clear,$and $you $may$add$other$methods$for$Process$as$need ed$to$supp o r t$t h e $fu n c ti ons$of$Birth,$Death,$and$Join.$$(Problem(3.((Sketch$rough$graphs$(“back$of$napkin”)$illustrating$the$relationships$among$the$following$qu an tities.$$Note$any$important$assumptions$underlying$your$analysis.$a) Page$fault$rate$as$a$function$of$page$size.$$What$page$sizes$are$typical$for$current$processors$and$operating$systems?$b) Disk$access$latency$as$a$function$of$rotation$speed.$$What$rotation$speeds$and$access$latencies$are$typical$for$current$disk$drives?$c) Peak$disk$read$bandwidth$and$read$latency$as$a$function$of$read$block$size$(request$size).$$What$peak $ban dw idth s$are$typical$for$curren t$disk$drives? $d) Peak$read$bandwidth,$I/O$operation$throughput$(IOPS),$and$access$latency$as$a$function$o f$th e$n u m b e r$o f$dr ive s$in $a$R A ID $st or ag e$u n it.$e) Utilization,$response$time,$and$throughput$as$a$function$of$request$arrival$rate$for$a$queueing$service$center.$f) I/O$block$cac he $hit$ratio$as $a$func tion $of$cach e$size ,$for$rand om $reference s$uniformly$distributed$across$the$I/O$block$space.$g) I/O$block$cache $hit$ratio$a s$a$fun ction $of$cach e$size ,$for$sequ en tial$refe ren ces .$h) Network$bandwidth$as$a$function$of$perMmessage$CPU$overhead.$Problem(4.$$Most$m o dern$pr o c e s sors$and $o p e r ating$systems$enforce$protection$boundaries$that$prevent$programs$from$interfering$with$one$another$or$with$the$operating$system,$and$that$allow$the$operating$system$to$securely$mediate$and$monitor$all$accesses$to$shared$resources$in$accordance$with$a$security$policy.$$Briefly$summarize$the$most$imp orta nt$m ec han ism s$un de rlying $OS $prote ction $and $secu rity.$$$Your$an sw er$should$be$comprehen sive$and$prec ise,$but$succinct.$Problem(5.$$Distribu te d$file$syst e ms$use$c a c h ing$to$im prove$p e r fo r mance$a nd$scala b i lit y .$$NFSv3$uses$block$caching$with$validation,$AFS/Coda$uses$wholeMfile$cachin g$with$callbacks,$and$other$systems$use$block$caching$with$file$leases$(e.g.,$NQMNFS$and$NFSv4).$$Suppose$that$there$is$a$fixed$universe$of$files,$each$client$generates$requests$at$a$fixed$rate,$client$failures$occur$with$some$fixed$probab ility$per$time$unit,$and$all$files$have$a$fixed$prob a b ility$o f$re fer en c e$fo r$e ac h$r eq u es t.$H ow$will$each $o f$the se $sc he mes$beha ve $as $the$numb er$of$clients $increa ses$an d/ or$as$the ir$distan ce$from $th e$server$increase


View Full Document
Download Qualifying Exam
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Qualifying Exam and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Qualifying Exam 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?