Unformatted text preview:

Quantum GasQuantum concentration:Classical gas:Quantum gas:If concentration is fixed, then temperature is important variable:Classical gas:Quantum gas:Degenerate gas:Classical entropy diverges at low temperatures:Quantum entropy will be zero since both bosons and fermions will be in the ground state…()2322 hπτMnQ≡QQnnnn≥<<3220)2( nMnnQhπττ≡=⇔=000ττττττ<<≤>>()τσττlog2325)log(023NnnNnQQ⎯⎯→⎯+=⇒∝→5 bosons or fermions in a box at zero temperatureEnergy spectrum in 3D:Bosons: Fermions:lowest level 3 lowest levels22222222 ,2zyxnnnnnmL++==hπεnAbout metalsValence electrons of atoms in a crystal lattice are free to move:Simplest : 1stgroup of the periodic table: Li, Na, K, CsN atom cores (15% of the space for Na) + N conduction electronsClassical theory (Maxwell-Boltzmann d. f.): Can explain: Ohm’s law, relation between thermal and electrical conductivities (Widemann-Franz law) Cannot explain: heat capacity, magnetic susceptibility, large mean free path (up to 108 lattice constants)•Electron mean free path is large because:(1) strictly periodic lattice does not scatter electrons(2) e-e scattering is weak because of the Pauli principleFree electron Fermi Gas in three dimensionsEnergy spectrum:Occupancy:Total number of particles/occupied orbitals: integration rule (including spin):Radius of a Fermi sphere in n-space:22222222 ,2zyxnnnnnmL++==hπεnFFFfεεεετεεετ><⎩⎨⎧==→+−=⇒=−nnnn,0,11))(exp(1)(030234812)(FnndnnfNFππε=⋅==∫∑nn31)3(πNnF=Free electron Fermi Gas in three dimensionsFermi energy/Fermi temperature:Fermi wavevector:Fermi velocity:All are determined by density!⇒⎟⎠⎞⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛===≡3232222222322πππετεNVmnmLFnFFFhh312322222)3()3(22nknmmkFFFππε=⇒=≡hhmnmkvFF312)3(πhh==3222)3(2nmFπεh=Density of states in 3DAverage values:D: Density of one-particle states (orbitals)# of orbitals per unit energy:dN – number of orbitals with energies between εand ε+ d εεεddDn=)(⇒=⋅=⇒=⇒=⇒=⇒==⋅⋅=⋅⋅===3221222222222221)(212...4)81(2)(αεπεααεπεεαεαεαεαπεεπεπεεεDddnnnnmLddnnddnnddndndnddDzyx321hnεπε232222)(⎟⎠⎞⎜⎝⎛=hmVD}∫∫∑===εεεεεεεdDddXfdXfXfX)()()()())(()(nnnnnnnDensity of statesAnother expression for DOS:Another way to get DOS:# of orbitals below ε:Average values:Density of occupied orbitals:Zero-temperature gas (ground state):Check:∫=εεεεdXfDX )()()(∫∫∑=⇒==FFdDNdXDXXεεεεεεε00)()()(nn)()(εεfDNNdNNFFFF===∫232302123322323εεεεεε⇒=⇒=⇒==εαπεεπαπεεα323332222)(3)3(DNNnFFFFεεε2323)(FND =εαπεεεαππεα32333222)(3)3(==⇒=⇒=ddNDNNTotal energy of degenerate Fermi gasTotal ground state (kinetic) energy:Direct way:Using DOS:Heat capacity (estimate):Only electrons close to the Fermi level can be thermally excited:...10...242812252230422302222210====⎟⎟⎠⎞⎜⎜⎝⎛⋅==∫∫∑=FnnnnnmLdnnmLdnnnmLUFFFhhhππππεnFNUε530=FFFFNNdNdDUFFεεεεεεεεεεε53522323)(25230232300====∫∫FvFNUCNUTUετττετ~~)(0∂∂=⇒⋅−Heat capacity of cold Fermi gasEnergy at low, but finite temperature:Heat capacity at constant volume:Approximations:Calculate derivative:NdfDdfDUFFεετμεεεεετμεεετ+−==∫∫∞∞00),,()()(),,()()(∫∫−≅−=⎟⎠⎞⎜⎝⎛∂∂≡ετεεεετεεεττdddfDdddfDUCFFFVV)()()()()()()()()(0FFFDDddfεεεεδτετμτ≈⇒−∝⇒≈⇒≈222)1()1( 1exp1+=⎟⎠⎞⎜⎝⎛−−⋅+−==⇒+=⇒−=xxFxxFeexeeddxdxdfddfxfxττεετττεεHeat capacity of cold Fermi gasChange variables:Heat capacity:# of excited electrons:Energy of each excitation:44344213213)1(23)()1()(2222πτεετττετε∫∫∞∞−∞−+≅+⋅= dxeexNDdxeexxDCxxFFxxFVF⇒−∞→−===−τετετεεFFxdxdx0 , ,τεπ)(32FVDC =FVNCετπ22=...~~~~2FVFFNCNUNετεττετ⇒⇒⎭⎬⎫Finite temperature energyGround state energy:FFNNUετπε22453+=⇒⎟⎠⎞⎜⎝⎛∂∂=⎟⎠⎞⎜⎝⎛∂∂==VVFVUUNCττδτετπ))((22⇒===∫∫FFVNdNdCUετπττεπττδ222412)()(0,53000τδτετUUUNUUF+=⇒≠==⇒=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+=22453FFNUετπεEntropy and pressure: equation of stateEnergy:Entropy:Free energy:Pressure:FFNNUετπε22453+=ττττστστετπ∝==⇒⎟⎠⎞⎜⎝⎛∂∂≡=∫VVNVVFVCdCCNC)( ;2,2FFFVNUNNCUUFεετπεττσ53453022=≈−=−=−=3232225332−∝=⇒⎟⎟⎠⎞⎜⎜⎝⎛= VNFVNmFFεπεh35052533232nnVNVUVFpFF∝===⎟⎠⎞⎜⎝⎛∂∂−=εετconst35=⎟⎠⎞⎜⎝⎛NVpFinite temperature chemical potentialCorrections:Symmetry:This is the result of growing DOS in 3D!)(0,0τδμεμτεμτ+=⇒≠=⇒=FFNdDdfDNδεεετμεεττμ+==∫∫∞43421on depends)(00)(),,()()(1)(1))(exp(1)(δμδμτμεε−−=+⇒+−=−−−fff[]444443444442144443444421μμμδδμδμδδμδμδ below holes0 above electrons0)(1)()()(∫∫∞→∞−−−−++= dfDdfDN[]0)()(2)()()(00>+≅+−−+=∫∫∞=∞δδδμεεδδμδμδμδμεdfddDdfDDN⇒=+=+=+∫∫∫∞∞∞220200121exp1)exp()(τπττδδδδδδμxxdxddfFinite temperature chemical potentialSolve directly:Solution:⇒+==∫μεμεετπεεddDdDN)(6)(220⇒⎟⎟⎠⎞⎜⎜⎝⎛−≈⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−≈⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡≈⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−=⇒⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=⇒⋅+⋅=⇒⋅=⋅=⇒=−−=∫22322232212221222321232223232123232302383218118181212362123)( ;3223)(23)(FFFFFFFFFFFFFNNNNddDNdDNDετπετπεμετπεμεμετπεμμετπμεμεεεμεεεεεεμεμ321⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−=22121FFετπεμExamples of Fermi gases1). Metals 2). White dwarf stars free electrons3). Nuclear matter3phelτγτACCCVVV+=+=K 10~4BFFkTε≡K 10~eV 103cm 1095-330FFTn ⇒×≈⇒=ε)(H A74.0A 0.01~ separationar internucleatom/cm 102g/cm 10g/cm 10-10cm 10701.0~ ,g 102~2oo3306741033<⇒×≈⇒==⇒×=×=−ASSVRRMMρρK 10~K 10~97FTT <<K 10~V 103~cm 10)34(cm) 103.1( 1173-3833113FFAATeVAnRVAR⇒×⇒≅≅⇒=⇒××≅−επSummaryconst)3(223)(21214533532222322222=⎟⎠⎞⎜⎝⎛≡===⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛+=NVpnmNDNCNUFFFFVFFFFτπεεεεετπετπεμετπεhBose gas in three dimensions: chemical potentialTo


View Full Document

U of M PHYS 4201 - Quantum Gas

Documents in this Course
Load more
Download Quantum Gas
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Quantum Gas and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Quantum Gas 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?