DOC PREVIEW
OSU ECE 5463 - DynamicsI

This preview shows page 1-2-14-15-29-30 out of 30 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 30 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

DynamicsThe branch of physics that treats the action of force onbodies in motion or at rest; kinetics, kinematics, andstatics, collectively. — Websters dictionaryOutline• Conservation of Momentum• Inertia Tensors - translation a n d ro tat io n• Dynamics– Newton/Euler Dynamics– Lagrangian Dynamics– State Space Form• Simulation and Feedforward Compensation• Linear Analysis:the Dynamic Manipulabili ty Ellipsoid1 Copyrightc2013 Roderic GrupenNewton’s Laws1. a particle will remain i n a state of constant rectilinear motionunless acted on by an external force;2. the time-rate-of-change in the momentum (mv) of the particleis proportional to the externally appli ed fo rce s, F =ddt(mv);and3. any force imposed on body A by body B is reciprocated by anequal and opposite reaction f orc e o n bod y B by body A.Conservation of MomentumLinear:F =ddt[m ˙x] = m¨x[N] =kg msec2Angular:τ =ddthI˙θi= I¨θ[Nm] =kg m2sec22 Copyrightc2013 Roderic GrupenInertia TensorArdvxyzMASS MOMENTS MASS PRODU C TSOF INERTIA OF INERTIAIxx=R R R(y2+ z2)ρdv Ixy=R R RxyρdvIyy=R R R(x2+ z2)ρdv Ixz=R R RxzρdvIzz=R R R(x2+ y2)ρdv Iyz=R R RyzρdvI =Ixx−Ixy−Ixz−IyxIyy−Iyz−Izx−IzyIzz3 Copyrightc2013 Roderic GrupenEXAMPLE: Inertia Tensor ofan Eccentric Rectangular PrismxyzlhwAIxx=Zh0Zl0Zw0(y2+ z2)ρdxdydz=Zh0Zl0(y2+ z2)wρdydz=Zh0(y33+ z2y)l0wρdz=Zh0l33+ z2lwρdz=l3z3+lz33h0(wρ)=l3h3+lh33wρor, since the mass of the rectangle m = (wlh)ρ,Ixx=m3(l2+ h2).4 Copyrightc2013 Roderic GrupenEXAMPLE: Inertia Tensor ofan Eccentric Rectangular Prism...completing the other moments and products of in erti a y i el d s:AI =m3(l2+ h2)m4wlm4hwm4wlm3(w2+ h2)m4hlm4hwm4hlm3(l2+ w2)5 Copyrightc2013 Roderic GrupenParallel Axis Theor em -Transla ti ng the Inertia Tenso rxyzACM(x,y,z)ACMthe moments o f i n erti a l ook l i ke:AIzz=CMIzz+ m(Ax2CM+Ay2CM),and the products of inertia are:AIxy=CMIxy+ m(AxCMAyCM).6 Copyrightc2013 Roderic GrupenEXAMPLE:The Symmetric Recta ngula r PrismxyzlhwACMCMIzz=AIzz− m(Ax2CM+Ay2CM)=m3(l2+ w2) −m4(l2+ w2)=m12(l2+ w2)CMIxy=AIxy− m(AxCMAyCM)=m4(wl) −m4(wl) = 0.moving the axes of rotation to the center of mass results in adiagonalized inertia tens orCMI =m12(l2+ h2) 0 00 (w2+ h2) 00 0 (l2+ w2)7 Copyrightc2013 Roderic GrupenRotating the Inert i a Tensorangular momentu m L0= I0ω about frame 0 in a vector quantitythat is conserved.we can exp re ss it r el ati ve to frame 1 asL1=1R0L0orI1ω1= R(I0ω0)= RI0RTRω0and therefore,I1= RI0RT.8 Copyrightc2013 Roderic GrupenRotating Coordinate SystemsDefinition (Inertial Frame)the frame where the absolute state of motion iscompletely knownLet frame A be an in erti a l frame. Frame B has an absol u te veloc-ity, ωBB(written in terms of frame B coord in a tes ).rA(t) =ARB(t)rB(t)˙rA(t) =ARB(t)ddt[rB(t)] +ddt[ARB(t) ]rB(t)yxzωxωyωzωzωyωzωxωyωxTo evaluate the second ter m on the right,consider how theˆx,ˆy, andˆz, basis vectorsfor frame B change by virtue of ωB.˙ˆx = ωzˆy −ωyˆz˙ˆy = −ωzˆx −ωxˆz˙ˆz = ωzˆy −ωyˆzsoddt[ARB(t) ]rB(t) =0 ωz−ωy−ωz0 ωxωy−ωx0rxryrz= ω × r9 Copyrightc2013 Roderic GrupenRotating Coordinate SystemsTherefore,˙rA(t) =ARB(t)ddt[rB(t)] +ddt[ARB(t) ]rB(t)=ARB˙rB+ (ωBB× rB) and, in fact, all vector quantitie s expressed in local frame s thatare moving relative to an inertial frame are differe ntiated in thiswayddt[ARB(t)(·)B] =ARBddt(·)B+ (ωB× (·)B)10 Copyrightc2013 Roderic GrupenRotating Coordinate Systems:Low Pressure Systemslarge sc al e atmosp he ri c flows converge at l ow pressure regions. Anonrotating planet, this would result in flow lines directed radiallyinward.−( v)LωLωvbut the earth rotates...consider a stationary inertial fra me Aand a rotat in g frame B attached tothe earthvA=ARB(t)vB˙vA=ARB[˙vB+ (ω × vB)]so that to an observer that travelswith frame B:˙vB=BRA[˙vA] − (ω × vB)a convergent flow and a rotating system, therefore, leads to acounterc lockwise flow in the northern hemisphere and a clockwiserotation in the southern hemisp h e re.11 Copyrightc2013 Roderic GrupenNewton/Euler MethodO1O2012l1l20ωv = v = = 0 00 0O11v 1v 1ω1N1F1O22v 2v 2F2N2ω2O33F3N3v 3v 3ω3v = v + f ( ) ω ω +v = v + g ( ) 1 0O11O101 0O111=v = v + f ( ) ω ω +v = v + g ( ) OOO=333 222 33333ω ω +OOi iv = v + f ( ) O=iii i−1 ii−1i−1 iv = v + g ( ) i3FN3O33l32F2N21N1F13f4η4η3f33−f3−ηf2η22−η2−ffη11v = v + f ( ) ω ω +v = v + g ( ) OOO=222 111 222 22 outwarditeration inwarditeration12 Copyrightc2013 Roderic GrupenNewton/Euler Equatio nsFNvωω+iziyiθxiNewton’s EquationF =ddt[Ri(mivi)] = Ri(mi˙vi) +˙Ri(mivi)= Ri[mi˙vi+ (ωi× mivi)]Euler’s EquationN =ddt[Ri(Miωi)]= Ri[Mi˙ωi+ (ωi× Miωi)]where F a n d N are the net force and torque ve cto rs on link i writ-ten in in erti al coordinates, and Riis the rotati on matrix relatin gframe i to the inertial frame, and ωiis the total angular velocityof link i written in link i coordin a tes .13 Copyrightc2013 Roderic GrupenNewton/Euler Equatio nsFNvωω+iziyiθxiIf F and N are written in the local coordinate frame for li n k i,thenmI300 M˙v˙ω+ω × mvω × Mω=FN= WW ∈ R6is the generalized force or wrench consisting of forcesand torques acting on link i w ritte n i n link i coordinates....if we can account for the fu ll state of motion, (ω,˙ω,˙v), then wecan compute the total load, W, acting on the center of mass anddefine the equation of motion f o r li nk i.14 Copyrightc2013 Roderic GrupenRecursive Newton/Euler Eq ua ti onsFNvωω+iziyiθxiPropagate the absolute state of motion, (ω,˙ω,˙v)iat frame i toframe (i + 1).Angular Velocity: ωREV OLUT E :i+1ωi+1=i+1Riiωi+˙θi+1ˆzi+1P RISMAT IC :i+1ωi+1=i+1RiiωiAngular Acceleration:˙ωREV OLUT E :i+1˙ωi+1=i+1Rii˙ωi+ (i+1Riiωi×˙θi+1ˆzi+1)+¨θi+1ˆzi+1P RISMAT IC :i+1˙ωi+1=i+1Rii˙ωi15 Copyrightc2013 Roderic GrupenRecursive Newton/Euler Eq ua ti onsLinear Acceleration:˙vw10pQ110y0x0z0y1x1z101vpQ0Q01t0pQ=0R11pQ+0t10vQ=0R11˙pQ+ (0ω1×0R11pQ) +0v10˙vQ=ddt0R11˙pQ + (0˙ω1×0R11pQ)+(0ω1×ddt0R11pQ ) +0˙v1=0R11¨pQ+ (0ω1×0R11˙pQ) + (0˙ω1×0R11pQ)+(0ω1×0R11˙pQ) + (0ω1×0ω1×0R11pQ)


View Full Document

OSU ECE 5463 - DynamicsI

Download DynamicsI
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view DynamicsI and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view DynamicsI 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?