DOC PREVIEW
OSU ECE 5463 - ACTUATORS (1)

This preview shows page 1-2-3-4-5 out of 15 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 15 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Actuators...physical devices that transform electrical, chemical, or thermalenergy into mechanical energy...• hydraulic• pneumatic• electric– stepper motors– permanent magnetDC motors• artificial muscles– shape memory alloys– polymers– protein-based actua-tors– bucky tubes1 Copyrightc2013 Roderic GrupenActuators: Hydraulicservoservo• energy is stored in the high pressure fluid reservoir (1000-3000psi)• open - l oop control - fork lifts, back hoes• good bandwidth (5 KHz - fluid reverses direction 5 msec)PROS1. good power/weight2. safe in explosive environ-mentsCONS1. expensive servos2. messy3. high maintenance2 Copyrightc2013 Roderic GrupenActuators: Pneumatic• compressible fluid (air)• jet-pipe servo controlNSgraphitepistonglasscylinderreservoir80 psicontrol+VPROS1. light and cheap2. passively back-drivableCONS1. stiction2. delicate3 Copyrightc2013 Roderic GrupenActuators: Stepper Motors• precise (low torque), open-loop position control• resonance - typically between 50 and 150 steps/sec• coggingNSNSNS(A)NSoffoffN Soffoff(B)SNNNSSSNSNS(C)SNoff offNNSoffoffSNNNSS(D)4 Copyrightc2013 Roderic GrupenPermanent Magnet DC Motors• run continuousl y in both directions• closed-loop servo control w/position feedback• relaible, good power/weight, high torques possibleLorentz ForceNSBqvF = qV × B5 Copyrightc2013 Roderic GrupenPermanent Magnet DC MotorIron Core:• high inertia, cogging• very reliabl e• che apBNSMoving Coil:• rare earth magnets - coil is roto r• low rotor inertia - minimal cogging• large torque• can be thin (0.0 2′′), large diameter(12′′)• printed-circuit motors• very expensive6 Copyrightc2013 Roderic GrupenDC Motors - Electrodynamicsforce: Newton N = kg · m/sec2torque: the product of a force and a moment armN · m =kg · m2sec2power: energy per unit time (Watts)P = V I(electrical)= τω(mechanical)W att =volt · coulombsec=Nmsec7 Copyrightc2013 Roderic GrupenDC Motors - ElectrodynamicsBSNF+VsupplyFqvqvThe Lorentz Force+VBFgeneratorFgenerated currentmechanical inputqvqvBack ward ElectromotiveForce (Back EMF)• Ktproportional to the number of loops• commutation - the rotor runs out of torque when the c u rrentloop is perpendicular to B, revers in g the current can continueto provide torque in the same direction.• for a commutated motor, the rotor current alternates with fre-quency proportional to ωback emf = LdIdt= Kbω8 Copyrightc2013 Roderic GrupenDC Motors - ElectrodynamicsτRLVτ = KtI motor torqueVb= LdIdt= Kb˙θ back emfV = IR + Kb˙θmechanical electricalpowero ut = powerin − lossesτ˙θ = V I − I2R(KtI)˙θ = (IR + Kb˙θ)I − I2R= KbI˙θKt= Kb9 Copyrightc2013 Roderic GrupenDC Motors - Electrodynamics (cont.)τRLVforwardcurrentXτ = J¨θ = KI = K"VR−K˙θR#backcurrent¨θ +K2JR˙θ +KVJR= 010 Copyrightc2013 Roderic GrupenDC Motors/Gearhe ad CombinationsJLBLJMBMτ = η τLM*Lττ= KIif the transmission is perfectly efficient:τoutωout= τinωinτout(ηωin) = τinωinτout= (1/η)τinif η = 0.01, the outpu t shaft carries on e hundred times the torqueat one hundredth the velocity of the input shaft11 Copyrightc2013 Roderic GrupenDC Motors/Gearhea dCombinations — Compound Loadsdynamic equation of motion - equate the torque derivedfrom Lorentz forces with the torques required to accelera te theload and to overcome viscous friction.τ =hJM¨θM+ BM˙θMi+ ηhJL¨θL+ BL˙θLibut:θL= ηθM,˙θL= η˙θM, and¨θL= η¨θMso:τ =JM+ η2JL ¨θM+BM+ η2BL ˙θMand:Jeff= JM+ η2JLBeff= BM+ η2BL12 Copyrightc2013 Roderic GrupenMore on Interf a cing DC MotorsH-BridgeVs2s3s4s1Vs2s3s4s1• cont inuous forward/backward speedcontrol• (s1, s2, s3, s4) open - freewheel• (s1, s2, s3, s4) closed - (regenerative)braking• RMS voltage s - pulse width modu-lation (PWM)13 Copyrightc2013 Roderic GrupenPulse Width Modulation−V+VRMS Vtontofft+100−100−V+Vtontoff+100−100−V+VRMS Vtontofft+100−100RMS V14 Copyrightc2013 Roderic GrupenArtificial MusclesMcKibben Air Muscles - non-linear pn eu ma ti c actuators, at-tract interest because th ey are among the strongest and fastestof the “artificial” muscles.Smart A ctua to rs - hi gh performance DC motors with localcomputation an d load sensing, simulate reference dynamics,coupled-oscillators, Matsuoka oscillators.Muscle Wire - Nitinol (mickel-titaniu m all oy) relatively slow?commercially available, forces o n the order of a few grams (si m-ilar to all options below this on in the lis t), low band wi d th( 1Hz)Polymers - electrostatic, chemical, and thermal15 Copyrightc2013 Roderic


View Full Document

OSU ECE 5463 - ACTUATORS (1)

Download ACTUATORS (1)
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view ACTUATORS (1) and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view ACTUATORS (1) 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?