DOC PREVIEW
CALTECH APH 162 - Molecular Biology

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

APh$162$–$Molecular$Biology!Day$2$!Restriction!Digests!The$LacZ$gene$o n$our$plasmid$is$flanked$by$restriction$sites$for$the$enzyme$`KpnI’$on$one$side$and$`HindIII’$on$ the$other,$allowing$us$to$cut$the$gene$out$and$leave$precisely$con trolled$‘sticky‐en ds’$on$the$plasmid$DNA,$onto$which$we$ will$ligate$our$new$reporter$gene$(or$`insert’),$called$$%Venus(YFP).$$The$enzyme$KpnI$cuts$at$any$site$ with$the$sequence$$...5‐GGTAC’C‐ 3...$$leaving$the$sticky‐end$GTAC,$while$the$enzyme$Hi ndIII$cuts$at$any$site$with$ the$sequ ence$...5‐A ’AGCTT‐3...$leaving$the$sticky‐end$AGCT.$$$The$fact$that$these$sticky$ends$are$distinct$means$we$can$dis cour age$the$plasmid$from$ligating$on$itself,$and$ensure$that$we$i nsert$the$new$reporter$gene$in $the$correct$orientation.$$$A$my riad$of$available$rest riction$enzymes$e nsur es$that$we$ca n$control$each$piece$o f$the $plasmid$independen tly.$$ In$today’ s$lab$session, $we$will$digest$pZE21‐lacZ$and$the$YFP $(Venus)$PCR$amplicon$from$day$1.$$Restriction$ enzyme$concentrations$are$me asured$in$the$units$of$`activity’,$wh ere$1$uni t$of$enzyme$can$digest$1$µg$of$DNA$in$1$hour$at$37°C.$$To$ensure$that$all$of$the$DNA$is$cut $by$t he$enzyme,$it $is$generally$recommended$to$add$enzyme$in $excess$o f$the $required$amount.$$Follow$the$protocol$below,$and$mix$the$fo llowing$reagents$to$begin$this$enzymatic$reaction.$$Once$the$reaction$is$fi nished,$we$w ill$examine$the$products$o n$an$agarose$gel$t o$determine$their $size$and$differences$in$topology.$$To$p roperly$gauge$the$size$of$DNA$segments$that$appear$on$t he$agarose$gel,$we $need$to$add$a$so‐called$`DNA$Ladder’$that$contains$segments$of$known$length,$against$which$we$will$compare$our$plasmid$digest.$ $We$will$use$ two$com mercially$available$ladder s,$an d$we$wil l$cre ate$our$own$`DNA$Ladder’$using$the$distinct$enzyme$EcoRI$to$digest$$λ–phage$(viral)$genomic$DN A$that$has$be en$pre‐digested$with$HindIII.$$$$Today$you$will$perform$the$following$rest riction$digests:$1. KpnI/HindIII$double$digest$of$the$PCR‐generated$YFP$( Venus)$insert$from$Da y$1.$2. KpnI$single$dige st$of$vector$pZE21‐LacZ$3. HindIII$single$digest $of$vector$pZE21‐LacZ$4. KpnI/HindIII$do uble$digest$of$vec tor$pZE2 1‐lacZ$5. EcoRI$single$dig est$of$pre‐HindIII$digested$lambda$ phage$DNA$$/Double/ Dige st/of/YFP/(Venus)/inser t/$Reagent:$Amount:$YFP$DNA$(from$Day$1$PCR)$200$ng$NEB$Buffer$2$(10X)(NEBEB7002S)$1X$BSA$(10X)$$$1X$KpnI$(10$units/µl)$$2$µl$HindIII$(10$units/µl)$$2$µl$DDH2O$Calc.$Total$Volume$50$µl$//Double/ Dige st/of/pZE21%lacZ/vector/%/$Reagent:$Do uble$Digest:$Kpn$I$S ingle$Digest$Hind$III$Single$Digest$No $Digest$Control$Plasmi d$(pZE21_LacZ$)$DNA*$300$ng$300$ng$300$ng$300$ng$NEB$Buffer$2$(10X)$$1X$1X$1X$1X$BSA$(10X)$1X$1X$1X$1X$KpnI$(10$units/ul)$$1$µl$1$µl$0$µl$0$µl$HindIII$(10$units/ul)$$1$µl$0$µl$1$µl$0$µl$DDH2O$Calc.$Calc.$Calc.$Calc.$Total$Volume$30µl$30µl$30µl$30µl$*$Your$TA$will$provide$the$concentration.$$λ/–/phag e/Digest$$Reagent:$Amount:$Digested$λ$DNA$0.5$ug/µl$1.5$µg$NEB$EcoRI$Buffer$(10X)$$$$1X$BSA$(10X)$$$1X$EcoRI$(10$units/µl)$$2$µl$DDH2O$Calc.$Total$Volume$30µl$$No tes:$$$NEB$Buffer$2$is$one$of$many$potential$buffers,$chosen$to$optimiz e$the$performance$of$both$KpnI$an d$HindIII.$$$See$“Enzyme$Properties”$at:$$htt p://www.neb.com/nebecomm/products/productR0104.asp$htt p://www.neb.com/nebecomm/products/productR0142.asp$$Procedure:$1. Verify$all$ca lculated$ reagent$volumes$with$you r$TA.$2. For$the$given$concentration$of$input$DNA,$calc ulate$the$corresponding$volume.$3. Mix$this$volume$of$DNA$along$with$th e$specified$amounts$(see$tables$above)$of$buffer,$res triction$enzymes$and$water$to$brin g$the$total$volume$to$25$µl,$in$ a$small$tube.$$Wh en$finished,$ask$your$TAs$for$the$app ropriate$amounts $of$restriction$enz yme$$$4. Mix$thoroughly$ and$spin$in$the$micro‐centrifuge$for$a$few$seconds$(<6$sec)$to$sediment$all$the$con tents.$5. In$addition$to$using$commercial$ladders,$we$will$create$our$own$ladder$using$lambda$phage$DNA.$a. The$λEphage$genom e$is$48,5 02bp,$if$the$sequence$was$totally$random,$how$many$HindIII$(5A’AGCTT3) $and$Eco RI$(5G’A ATTC3)$sites$would$ you$expect?$$Ho w$many$are$there$in$rea lity?$$i. Given$the$actual$restriction$sites$for$EcoRI$and$HindIII,$ calculate$the$expected$segme nt$lengths$of$ the$DNA$ladder.$ii. See$the$attached$restriction$site$map$for$the$λ‐ phage$ge nom e.$$6. Place$all$six$of$your$tubes$in$a$37°C$incubato r$for$1$hour.$$ During$this$incubation,$we$will$prepare$the$agarose$ gel.$$$DN A!Agarose!Gel!Electrophoresis!The$above$enzymatic$reactions$and$accom panying$controls$have$produced$a$range$of$DNA$ lengths$and$the$no‐enzy me$(uncut$DNA)$control$e ven$has$a$distinct$polymer$topology.$$It$is$immensely$useful$to$be $able$to$measure$the$l engt hs$produ ced$during$DNA$manipulations.$$The$pr imary$method$em ploy ed$throughout$molecular$biology$is$to$subject$DNA$i n$an$ultra‐viscous$agarose$gel$ to$an$ele ctric $field,$wherein$we$utilize$t he$~‐5.88e/nm$charge$on$DNA $to$‘pull’$ it$throug h$the$gel.$$In$a$given$period$of$time$ the$DNA$migrates$through$the$gel$roughly$proportional$to$the$inverse$of$its$ma ss.$$$$$1X$TAE$Buffer$~500$ml$1X$TAEE$1%$agarose$gel$~$40$ml$(40$mL$TAE$+$0.4g$agarose)$100bp$DNA$Ladder$(NEBEN0467S)$2$µl$ladde r$+$3$µl$H2O$+$1$µl$6x$loading$dye$1000bp$DNA$Ladder$(NEBEN3232)$2$µl$ladde r$+$3$µl$H2O$+$1$µl$6x$loading$dye$For$plasmi d$digest,$3$controls,$λ$DNA$25$µl$of$digest$+$5$µl$6x$loading$dye$No te:$$TAE$(Tris‐acetate$EDTA)$buffer$$Materi als:$gel $box$$ gel $power$suppl y$gel $tray$$ gel$comb$$$$/////////////You$will$run$the$following$ sam ples $on$the$gel:$1. 100$bp$ DNA$ladder$2. Non‐purified,$non‐digest ed$PCR$product$from$day$1$3. Lambda$phage$double$digest$4. pZE21‐LacZ$–$KpnI$single$dig est$5. pZE21‐LacZ$–$KpnI$single$dig est$6. pZE21‐LacZ$–$KpnI/HindIII$double$digest$7. pZE21‐LacZ$–$no$enzyme$control$ digest$8. 1$k b$DNA$la dder$b)$a)$DNA$ Ladders$a)$$Example$of $1$kb$DNA$ladder$on$a $0.8%$a garose$gel,$stain ed$with$EtBr.$b)$$Example$of$the$100bp$DNA$ladder$on$a$1.3%$aga rose$gel,$stained$with$Et Br.$$$$$Proced ure:!$1. Using$DI$water,$clean$the$gel$box, $gel$comb$and$gel $tray.$2. In$short$bursts$of$~10s,$heat$ the$1X$TAE‐$1%$agarose$gel$in$the$microwave$until$i t$is$completely$liquefied. $3. Secure$the$gel$comb$in$the$gel$tra y$and$orient$so$th at$the$re


View Full Document
Download Molecular Biology
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Molecular Biology and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Molecular Biology 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?