Unformatted text preview:

iirfirEECS 451 DESIGN OF IIR DIGITAL FILTERSGoal: Design IIR (Infinite Impulse Response) digital filtersFrom: Butterworth, Chebyschev and elliptic analog filters.Why? #coefficients→ ∞, so too hard to do directly.Given: Analog lowpass (or whatever) filter Ha(s).Want: Digital lowpass (or whatever) filter H(z).Mapping: Clearly need to substitute mapping s → zso that: (1) s = jΩ → z = ejω; (2) R e[s] < 0 → |z| < 1 (stability preserved).1. Backward difference: s ⇔ddt≈x(nT )−x((n−1)T )T. Need T << 1.Mapping: s = (1 − z−1)/T → H(z) = Ha(s = (1 − z−1)/T ). Example: p. 670.Props: (1) Imag axis NOT mapped to unit circle; (2) stability preserved.Imag axis→circle |z −12| =12; tangent to |z| = 1 f or z ≈ 1 (DC).2. Impulse invariance: h(n) = ha(t = nT ). Sample impulse response.Cont: Ha(s) =Ppk=1cks−pk⇔ ha(t) =Ppk=1ckepktu(t). Substitute t = nT :Disc: H(z) =Ppk=1ck1−epkTz−1⇔ h(n) =Ppk=1ckepkT nu(n) = ha(t = nT ).Sampling: Can also interpret as sampling h(t) (see p. 671-673; not worth it).”Mapping”: z = esTmaps poles, not zeros! Apply to partial fraction of Ha(s).Example: Ha(s) =s+0.1(s+0.1)2+9=1/2s−(−0.1+j3)+1/2s−(−0.1−j3)⇔ ha(t) = e−0.1tcos(3t)u(t).(p. 675) H(z) =1/21−e(−0.1+j3)Tz−1+1/21−e(−0.1−j3)Tz−1⇔ h(n) = e−0.1nTcos(3nT )u(n).3. Bilinear Transform: s =2T1−z−11+z−1. ”Bilinear”=ratio of linears.On the imaginary axis: s = jΩ and z = ejω→ Ω =2Ttanω2.Why? Can be derived from trapezoidal rule for integr ation (previous HO).Props: (1) Imag axis mapped to unit circle; (2) stability preserved (p. 678).Example: Ha(s) =s+0.1(s+0.1)2+16. Want resonant freq. Ω = 4 to map to ω =π2.(p. 679) Ω =2Ttanω2→ 4 =2Ttanπ4→ T =12.Insert s = 41−z−11+z−1in Ha(s) → H(z) =0.128+0.006z−1−0.122z−21+0.0006z−1+0.975z−2. Poles: 0.987e±jπ/2.Frequency Warping: Need to prewarp Ω due to Ω =2Ttanω2:Example: Design one-pole lowpass filter with 3 dB bandwidth of 0.2π.(p. 680) Ω =2Ttan(0.1π) =0.65T→ Ha(s) =0.65/Ts+0.65/T(one-po le analog LPF).Insert s =2T1−z−11+z−1→ H(z) =0.245(1+z−1)1−0.509z−1. T cancels! |H(ej0.2π)| = 0.707.EECS 451 IIR DIGITAL FILTERS DESIGN EXAMPLEGiven: Ha(s) = 1000/(s + 1000) ⇔ ha(t) = 1000e−1000tu(t) (1-pole filter).Goal: Map this analog filter to 3 digital IIR filters using the following:Backward differences, impulse invariance, bilinear transformation.Analog: |H(jΩ)| = 1000/√Ω2+ 106. 3 dB freq=1000 radians/sec≈160 Hz.Sample: Suggests sampling rate of 1000 Hz→ T = 0.001 seconds=1 m s.Backward s =1−z−1T= 1000(1 − z−1) → H(z) =10001000(1−z−1)+1000= 1/(2 − z−1).difference H(ej0) = 1/(2 −1) = 1. H(ejπ) = 1/(2 − (−1)) = 1/3. Lowpass.Impulse h(n) = T ha(nT ) = (0.001)(1000)e−(1000)(0.001)n= e−n, n ≥ 0.invariance H(z) = 1/(1 − e−1z−1) since pole at −1000 → e−1000(0.001)= e−1.H(ej0) = 1/(1 −e−1) ≈ 1.58. H(ejπ) = 1/(1 + e−1) ≈ 0.73. Lowpass.Bilinear s =2Tz−1z+1→ H(z) = 1000/[2000z−1z+1+ 1000] = (z + 1)/(3z − 1).transform H(ej0) = 1. H(ejπ) = 0. Lowpass; now has zero at −1.s=jΩ s =2Tz−1z+1⇔ z = (1 + sT /2)/(1 − sT/2). Now set s = jΩ:maps to z = (1 + jΩT/2)/(1 −jΩT/2) = (1 + jΩT/2)/(1 + jΩT/2 )∗→ |z| = 1.z=ejωImaginary axis (cont. time) mapped to unit circle (discrete time).Prewarp s =2T(z − 1)/(z + 1)|z=ejω=2T(ejω− 1)/(ejω+ 1). Now set s = jΩ:formula jΩ =2T[ejω/2(ejω/2− e−jω/2)]/[ejω/2(ejω/2+ e−jω/2)] = j2Ttanω2.Matlab: [BD,AD]=bilinear(BC,AC,F); substitutes s = 2Fz−1z+1in Ha(s).Ha(s) has numerator coefficients BC and denominator AC.H(z) has numerator coefficients BD and denominator AD.F=1/T (not T–watch this!). N eed row vectors of coefficients.Matlab: [B,A]=butter(N,W); designs digital Butterworthfilter of order N with cutoff f requency W= ωo/π.Use [B,A]=butter(N,W,’s’); to get analog filter.EECS 451 IIR FILTER DESIGN EXAMPLEGoal: Design a digital IIR lowpass filter with sampling rate 3600 Hz.using: Bilinear transformation (T=2) of Butterworth low-pass filter.Specs: DC gain: 0 dB. Cutoff: 600 Hz. Gain: -86 dB at 1200 Hz.Cutoff: Sampling: ωc= 2π6003600=π3. Bilinear: Ωc=2Ttanωc2=1√3.Gain: Sampling: ωg= 2π12003600=2π3. Bilinear: Ωg=2Ttanωg2=√3.Specs: Analog Butterworth filter drops 86 dB in frequency ra tio√31/√3= 3.Order: Analog Butterworth filter order=(86 dB)/(20 log103) = 9 (rounded).Poles: Analog Butterworth poles: ωcexp[j(π2+(2k+1)π2N)] for k = 0 . . . N −1.Here: 9 poles at1√3ejθfor θ=100,120,140,160,180,200,220,240,260 degrees.Transfer: Ha(s) = 1/[(s −p1)(s − p2) . . . (s − p9)] for 9 poles pk, to scale factor.Then: Bilinear transform ation: Set s =2Tz−1z+1=z−1z+1in the above Ha(s):Get: H(z) = 1/[(z−1z+1− p1)(z−1z+1− p2) . . . (z−1z+1− p9)] which simplifies toH(z) = (z + 1)9/[((z −1) −p1(z + 1)) . . . ((z −1) −p9(z + 1))] becomesH(z) = (z + 1)9/[a0z9+ a1z8+ . . . + a9] → ARMA difference equationa0y(n)+a1y(n-1)+. . . + a9y(n-9)=x(n)+9x(n-1)+36x(n-2)+84x(n-3)+126x(n-4)+126x(n-5)+84x(n-6)+36x(n-7)+9x(n-8)+x(n-9).Note: Using analog filter to design digital filter to implement analog filter.Problem #2 of Problem Set #9: Single-Pole FiltersGiven: Ha(s) =as+a. DC gain=a0+a=1. 3 dB freq.=a. Gain=0 at ω → ∞.Bilinear:(T=2) H(z) = a/[z−1z+1+ a] =a(z+1)(z−1)+a(z+1)=a(z+1)(a+1)z+(a−1).DC gain=a(1+1)(a+1)(1)+(a−1)= 1 at ω = 0 after setting z = ej0= +1.Gain=0=a(−1+1)(a+1)(−1)+(a−1)= 0 at ω = π after setting z = ejπ= −1.3 dB: |a/[ejω−1ejω+1+ a]|=1√2→ ja=ejω−1ejω+1=j tanω2→ ω = 2 tan−1a.Prewarp a: Ω = a ⇔ ω = 2 ta n−1a. Then have Ω = tana2⇔ ω = a.Then: Ha(s) =tan(a/2)s+tan(a/2)and s =z−1z+1→ H(z) = tan(a/2)/[z−1z+1+ tan(a/2)].H(ejω) = tan(a/2)/[ejω−1ejω+1+tan(a/2)] = tan(a/2)/[j tan(ω/2)+tan(a/2)].3 dB: ω = a → |H(eja)| = |tan(a/2)/[j tan(a/2) + tan(a/2)]|


View Full Document

U-M EECS 451 - DESIGN OF IIR DIGITAL FILTERS

Download DESIGN OF IIR DIGITAL FILTERS
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view DESIGN OF IIR DIGITAL FILTERS and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view DESIGN OF IIR DIGITAL FILTERS 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?