DOC PREVIEW
MIT 10 34 - Boundary Value Problems

This preview shows page 1 out of 4 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 4 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Finite Differences Newton’s Method Example: Rectangular Duct With Incompressible Flow MATLAB for Sparse Matrix Adding Convection10.34, Numerical Methods Applied to Chemical Engineering Professor William H. Green Lecture #19: Boundary Value Problems (BVPs) Lecture 2. Finite Differences (2)(2)()(0xOxxxfxxfdxdfooxΔ+ΔΔ−−Δ+≡) Relatively good accuracy, better convergence ()xOxxfxxfdxdfooxΔ+Δ−Δ+≡)()(0 ONE SIDED upwind differencing: The error leads to numerical stability but is a mathematical trick. Adds in error Deff = Dtrue + VxΔx/2 and Pelocal, eff < 2. Still wrong, because artificially increased. V2φ + v·Vφ + S(φ) = 0 ()0)()(21211=+Δ−+Δ+−+−+xfxvxiiiiiφφφφφφ linear linear linear or nonlinear ()()00)(0)(21=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+×%xfxfMφφφ ()()00021=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛+×%φφφffM approx. to differential operators Newton’s Method F(φ) = 0 JΔφ = -F Í Newton update J = M + ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛∂∂∂∂%0021φφφφff Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].Example: Rectangular Duct With Incompressible Flow Rectangular duct with incompressible fluid being pulled by gravity: V2vz(x,y) = ρg/μ No slip at walls: vz(boundaries) = 0 2222yx ∂∂+∂∂ jNinnyxyii+−=→(*)1()(),ϕφ ⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛=),(),(),(),(1212111yxvyxvyxvyxvzNzzzy#ϕ •••••••• •↓•→•←•↑• Ny yÇ Δy x Æ Nx Δx 11234+••••••••Ny (1,1) Figure 1. Rectangular duct with incompressible flow. NxNy = # points Interior: 211211)(),(),(2),()(),(),(2),(yyxvyxvyxvxyxvyxvyxvjizjizjizjizjizjizΔ+−+Δ+−−+−+ Rows of M look like this: 10.34, Numerical Methods Applied to Chemical Engineering Lecture 19 Prof. William Green Page 2 of 4 Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].⎟⎟⎠⎞⎜⎜⎝⎛ΔΔ⎟⎟⎠⎞⎜⎜⎝⎛Δ+Δ−ΔΔ= 00)(100)(100)(1)(12)(1000)(1.....0222222yxyxyxM Mφ = ρg/μ {Mφ = b} Shown in MATLAB function makeAforLaplacian(Nx,Ny,Xmax,Ymax) Non-sparse: A(n, n+1) = 1/(Δy)2Ymax Ç Æ Nx Sparse format: mvec(k) = n ηvec(k) = n+1 A vec(k) = 1/(Δy)2 MATLAB for Sparse Matrix Nx = 20; Ny = 30; Xmax = 40; Ymax = 10; A_sparse = makeA_sparse(Nx,Ny,Xmax,Ymax); b = zeros(Nx*Ny,1); % unknown vector b = b+1; phi = A_sparse\b; check = A_sparse*phi; check(400) ans = 1.0 bbig = 1e7*b phi = A_sparse\bbig; check = A_sparse*phi; ans = 1e7 How do know if correct? V_shaped = reshape(phi, Ny, Nx); surf(V_shaped) Makes a beautiful plot of the solution Adding Convection Peclet number Pe = vL/D Pelocal = vxΔx/D 10.34, Numerical Methods Applied to Chemical Engineering Lecture 19 Prof. William Green Page 3 of 4 Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].V(vφ) + DV2φ + S(φ) = 0 ⎟⎟⎠⎞⎜⎜⎝⎛−∂∂−−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂=+∂∂+∂∂+∂∂DSxvDDvxSxDxvxvxxxxϕϕϕϕϕϕϕϕϕ1'''0)(22 x∂∂ϕ Recall from ODE discussion: 10.34, Numerical Methods Applied to Chemical Engineering Lecture 19 Prof. William Green Page 4 of 4 Cite as: William Green, Jr., course materials for 10.34 Numerical Methods Applied to Chemical Engineering, Fall 2006. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. λλϕϕ2<Δ−=∂∂tt numerical stability of explicit solvers 2Pe')'(local<2<Δ⇒2<Δ=+−=∂∂DvxxDvstuffDvxxxxλλϕϕ Achieve Pelocal < 2 by making Δx smaller. This leads to stiffness. Difficulties when implicit solving. Use adaptive meshing with Gear predictor-corrector. Deff = Dtrue + )()()(200xOxxfxxfxfxvxDxΔ+Δ−Δ+=∂∂Δ 2Pelocal< Method of lines for flow only in x-direction .....)(),,(),,(2),,(.....2222+⎟⎟⎠⎞⎜⎜⎝⎛ΔΔ−+−Δ++∂∂+∂∂+∇+∂∂yzyyxzyxzyyxDxDxvDxvxxϕϕϕϕϕϕϕ PDE Æ ODE {works only if: vy, vz ~ negligible; Pelocal< 2} Equations like this for all discrete z and y values in


View Full Document

MIT 10 34 - Boundary Value Problems

Documents in this Course
Load more
Download Boundary Value Problems
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Boundary Value Problems and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Boundary Value Problems 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?