DOC PREVIEW
NU EECS 351 - Transformations and Matrices

This preview shows page 1-2-3 out of 9 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 9 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

CS5600 1Transformations ICS5600Computer GraphicsbyRich Riesenfeld27 February 2002Lecture Set 5CS56002Transformations and Matrices• Transformations are functions• Matrices are functions representations• Matrices represent linear transf’s• 2 x 2 Matrices == 2D Linear Transf’sCS56003What is a 2D Linear Transf ?Recall from Linear Algebra:Definition: T(ax + y) = aT(x) + T(y)for scalar a and vectors x and yCS56004Example: Scale in xScale in x, by 2:(2 (xo + x1), y0 + y1) = (2xo, yo) + (2x1, y1)CS56005Example: Scale in x by 2What is the graphical view?CS56006Scale in x by 2y(x1, y1)(2 x1, y1)(x0, y0)(2 x0, y0)xCS5600 2CS56007 ( 2xo + 2x1, y0 + y1 )yx ( 2 xo + 2 x1, y0 + y1 )(2 x1, y1)(2 x0, y0)CS56008 ( 2 (xo + x1), y0 + y1 )(x1, y1)(x0, y0)yx (( xo + x1 ), y0 + y1 ) ( 2 (xo + x1), y0 + y1 )CS56009 ( 2 (xo + x1), y0 + y1 ) (( xo + x1 ), y0 + y1 ) ( 2 (xo + x1), y0 + y1 )yxCS560010Summary on Scale• “Scale then add,” is same as• “Add then scale”CS560011Matrix RepresentationScale in x by 2:2 00 1xy=2xyCS560012Matrix RepresentationScale in y by 2:1 00 2xy=x2yCS5600 3CS560013Matrix RepresentationOverall Scale by 2:2 00 2xy=2x2yCS560014Matrix RepresentationShowing Same2 00 1x0 + x1y0 + y1=2(x0 + x1)y0 + y1=2x0 + 2x1y0 + y1CS560015What about Rotation?Is it linear?CS560016Rotate by θ yx(0,1)θθ(1,0)CS560017Rotate by θ: 1st Quadrantyx(cos θ , sin θ )sin θcos θθ(1,0)CS560018Rotate by θ: 1st Quadrant(1, 0) (cos θ , sin θ )CS5600 4CS560019Rotate by θ: 2nd Quadrant(0,1)θθ(1,0)yxCS560020Rotate by θ: 2nd Quadrant y(0,1)xsin θcos θθθCS560021Rotate by θ: 2nd Quadrant(0, 1) (-sin θ , cos θ )CS560022Summary of Rotation by θ (0, 1) (-sin θ , cos θ )(1, 0) (cos θ , sin θ )CS560023Summary (Column Form)−⇒θθcossin10⇒θθsincos01CS560024Using Matrix Notation=θθθθθθsincos01cossinsin-cos=θθθθθθcossin-10cossinsin-cos(Note that unit vectors simply copy columns)CS5600 5CS560025General Rotation by Matrix+=θθθθθθθcossinysin-coscossinsin-cosyxxyxθCS560026Who had linear algebra? Who understand matrices?CS560027What do the off diagonalelements do?CS560028Off Diagonal Elements+=ybxxyxb 101+=yayxyxa101CS560029Example 1y+==yxxyxyxT4.014.001),()1,0()0,1()1,1()0,0(SxCS560030Example 1xy+=yxxyxT4.0 ),(S)1,0()0,1()1,1()0,0(CS5600 6CS560031Example 1y)1,0()4.0,1()0,0(T(S)+=yxxyxT4.0 ),()4.1,1(xCS560032Example 2y+==yyxyxyxT6.0106.01),(Sx)1,0()0,1()1,1()0,0(CS560033Example 2xy+=yyxyxT6.0 ),(S)1,0()0,1()1,1()0,0(CS560034Example 2xy)1,0()0,1()0,0(T(S))1,6.0(+=yyxyxT6.0 ),()1,6.1(CS560035SummaryShear in x:Shear in y:+==yayxyxaShx101+==ybxxyxbShy101CS560036Double Shear+=ab)(10110111baab+=11 ab)(101101babaCS5600 7CS560037Sample Points: unit inverses=−011101bb=−101011aaCS560038Geometric View of Shear in x)0,1()1,( a−)1,0()0,1()1,1(Another Geometric View ofShear in xx39xxyyAnother Geometric View ofShear in x40xyCS560041Geometric View of Shear in y)1,0()0,0(),1( b−)1,0()0,1()0,0()1,1(Another Geometric View ofShear in yhh42xyxyCS5600 8Another Geometric View ofShear in y43xyCS560044“Lazy 1”10001001 0=11yxyxCS560045Translation in x1yx+=10 1001001yxdxxdCS560046Translation in x1yx+=100101001ydyxdyCS560047Homogeneous Coordinates10001001 0=11yxyxCS560048Homogeneous Coordinates0for , ≠↔=λλλλyxyx1yxCS5600 9CS560049Homogeneous CoordinatesHomogeneous term effects overall scaling0,For ≠λ↔==yxyxyxyxλλλλλλ110001001110Homogeneous CoordinatesAn infinite number of points correspond to (x,y,1).They constitute the whole line (tx,ty,t).xwyw = 1(tx,ty,t)(x,y,1)CS560051We’ve got AffineTransformationsLinear + TranslationCS560052Next Class:Compound Transformations• Build up compound transformationsby concatenating elementary ones• Use for complicated motion• Use for complicated


View Full Document

NU EECS 351 - Transformations and Matrices

Download Transformations and Matrices
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Transformations and Matrices and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Transformations and Matrices 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?