DOC PREVIEW
SJSU EE 172 - Advanced Impedance Matching

This preview shows page 1-2-14-15-30-31 out of 31 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 31 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

AdvancedImpedance MatchingMicrowave EngineeringEE 172Dr. Ray KwokAdvanced Impedance Matching - Dr. Ray KwokAdvanced Impedance MatchingSo far….• 2-elements tuning• Lumped Elements (L,C)• Transmission Lines• Stubs (single & double)• 1-port network• single frequencyNow:• are all tuning the same?• wideband matching – multiple sections• multi-ports (simultaneously tuned)Advanced Impedance Matching - Dr. Ray KwokLet’s compare our 2-element tuning examples over frequency…• Lumped Elements (L,C)• Transmission Lines• Stubs (Single and Double)• Quarter-Wave transformerAdvanced Impedance Matching - Dr. Ray KwokLumpedElementsR=1G=1If ZLis inside the G=1 circle,first element cannot be shuntZL(0.4, 1)YL(0.34, -0.87)Z (0.4, 0.48)Y (1, -1.24)=0.4+j1ZLjB = +j1.24 = jZoωCjX = -j0.52 = -j/ωCZoZ (0.4, -0.48)Y (1, 1.24)=0.4+j1ZLjB = -j1.24 = -jZo/ωLjX = -j1.48 = -j/ωCZoZ (1, 1.4)Y (0.34, -0.48)jB = +j0.39 = jZoωC=0.4+j1ZLjX = -j1.4 = -j/ωCZoZ (1, -1.4)Y (0.34, 0.48)jB = +j1.35 = jZoωC=0.4+j1ZLjX = j1.4 = jωL/ZoIf ZLis inside the R=1 circle,first element cannot be in seriesAdvanced Impedance Matching - Dr. Ray KwokReturn Loss0.01 0.11 0.21 0.31 0.41 0.5Frequency (GHz)Lump-50-40-30-20-100DB(|S[1,1]|)Lump1DB(|S[1,1]|)Lump2DB(|S[1,1]|)Lump3DB(|S[1,1]|)Lump4Advanced Impedance Matching - Dr. Ray KwokUsing StubsZL(0.4, 1)YL(0.34, -0.87)Z (0.4, -0.48)Y (1, 1.24)=0.4+j1ZLshort shunt stubjB = -j1.24 = -jcotβlopen series stubjX = -j1.48 = -jcotβlZ (1, 1.4)Y (0.34, -0.48)open shunt stubjB = +j0.39 = jtanβl=0.4+j1ZLopen series stubjX = -j1.4 = -jcotβlllllβ=β−=β−=β=tanjYYcotjYYcotjZZtanjZZooposhooposhOne way, simply replace lumped elements with stubsZocan be anything hereprevious exampleAdvanced Impedance Matching - Dr. Ray KwokOpen – Short Stubs0.01 0.11 0.21 0.31 0.41 0.5Frequency (GHz)Stubs-50-40-30-20-100DB(|S[1,1]|)Stub1DB(|S[1,1]|)Stub2Advanced Impedance Matching - Dr. Ray KwokZL(0.4, 1)YL(0.34, -0.87)=0.4+j1ZLTransmission Line Matchingusually requires 1 more elementprevious example0.130λλλλ0.185λλλλ0.055λ50 ΩjX = -j1.85 = -j/ωCZo=0.4+j1ZL0.435λλλλ0.305λ50 ΩY (1, 1.9)short shunt stubjB = -j1.9 = -jcotβlZ (1, 1.85)Advanced Impedance Matching - Dr. Ray KwokSingle Stub Tuningrefers to sliding a stub (any kind)along a transmission line. previous example0.130λλλλ0.064λλλλ=0.4+j1ZL0.435λλλλ0.305λ50 ΩY (1, 1.9)short shunt stubjB = -j1.9 = -jcotβlIn practice, usually shunt stubs, short stub for waveguides,open stub for microstrip.=0.4+j1ZL0.434λ50 Ωopen shunt stubjB = j1.9 = jtanβlZL(0.4, 1)YL(0.34, -0.87)Y (1, -1.9)Advanced Impedance Matching - Dr. Ray KwokAny Stubtanβl can be “+” or “-” previous example0.130λλλλ0.064λλλλ=0.4+j1ZL0.435λλλλ0.305λ50 ΩY (1, 1.9)open shunt stubjB = - j1.9 = jtanβlβl = -1.086 + π = 2.055length = 0.327λ > λ/4can use any type depends on realization.e.g. use shunt open stub only…=0.4+j1ZL0.434λ50 Ωopen shunt stubjB = j1.9 = jtanβlβl = 1.086length = 0.173λZL(0.4, 1)YL(0.34, -0.87)Y (1, -1.9)Advanced Impedance Matching - Dr. Ray KwokTransmission Line + Stub0.01 0.11 0.21 0.31 0.41 0.5Frequency (GHz)xline_stub-50-40-30-20-100DB(|S[1,1]|)single_stub1DB(|S[1,1]|)single_stub2DB(|S[1,1]|)single_stub3DB(|S[1,1]|)single_stub4DB(|S[1,1]|)single_stub5Advanced Impedance Matching - Dr. Ray KwokDouble Stub Tuninge.g. 2 shunt short stubs (50Ω)separated by a 50Ω line of 0.2λ0.3λλλλ0.5λλλλ– 0.2λλλλ• rotate the 1-circle by line length• adjust d1along constant-G circle • stop at the rotated blue-circle• xline will bring it to the green circle• adjust d2along the green circle to Zo• not for all ZL!! Forbidden zone.d1d2ZL0.2λ50 Ω=0.4+j1ZL(0.4,1)YL(0.34,-0.87)Y (0.34,-0.2)Y (1,1.22)-cotβd1 = +0.67βd1= -0.98 +π = 2.16d1= 0.344λ-cotβd2 = −1.22βd2= 0.687d2= 0.109λ50 Ω50 ΩAdvanced Impedance Matching - Dr. Ray Kwoke.g. Quarter-Wavee.g. shunt stub (100Ω) then λ/4ZL= 20 + j 50 Ω• move Z to the real axis• normalized Zc= √Z = √3.1; Zc= 1.76• Zc= 50(1.76) = 88 ΩZL(0.4,1)YL(0.34, -0.87)Z (3.1,0)Y(0.34,0)(1/100) tanβd= (0.87)(1/50)βd = 1.05d = 0.167λdZLλ/4Zc=0.4+j150 Ω100ΩAdvanced Impedance Matching - Dr. Ray KwokDouble Stub / Quarter-wave0.01 0.11 0.21 0.31 0.41 0.5Frequency (GHz)double_n_quarter-30-20-100DB(|S[1,1]|)do uble_s tubDB(|S[1,1]|)qu arter_waveAdvanced Impedance Matching - Dr. Ray KwokMixed matching samples0.01 0.11 0.21 0.31 0.41 0.5Frequency (G Hz)Mixed-40-30-20-100DB(|S[1,1]|)double_s tubDB(|S[1,1]|)Lump1DB(|S[1,1]|)quarter_waveDB(|S[1,1]|)single_stub2DB(|S[1,1]|)Stub 1Advanced Impedance Matching - Dr. Ray Kwok2-port tuning2 – portnetworkMatchingNetwork ?Especially useful for active component design : amplifier (transistor)or inserting devices into a system (such as SAW filter…)for matched load11inS=ΓAdvanced Impedance Matching - Dr. Ray KwokUnmatched load (from previous lecture)2 – portnetworkb1b2a1a2= ΓLb2ZLThis is what we measure.How does that affect our matching process?L2221L1211in11L22121L121111L2212122L2212122212122L121112121111212221121121S1SSSabS1aSSaSbS1aSbbSaSaSaSbbSaSaSaSbaaSSSSbbΓ−Γ+=Γ≡Γ−Γ+=Γ−=⇒Γ+=+=Γ+=+==Advanced Impedance Matching - Dr. Ray KwokTo what we match? (from previous lecture)( ) ( )( )22g2g2g2gg2gininlossLoadgg2XR4RV21X2R2RV21RI21PP+=+===−( )2g2goo2go2totalgoLineLoadXRZZV21ZZV21ZI21PP2++====Case 1: match ZL= Zo= real → ΓL= 0, VSWR = 1 on the lineZinlZoZLZg=Rg+ jXgVgZinZgVgCase 2: match Zin= Zg→ Γin= 0, VSWR > 1g2g2gg2gLoadRV81R4RV21P ===Case 3: match Zin= Z*g→ Xin= -Xg= max power availableconjugate matchingIdeally, match all Zo= Zg= ZL= real, then all 3 PLoadare the same = Pmax.Advanced Impedance Matching - Dr. Ray KwokConjugate Match ZoOutputmatchingInputmatchingDeviceto be matchedZoΓinΓoutΓLΓSL2221L1211inS1SSSΓ−Γ+=ΓS1121S1222outS1SSSΓ−Γ+=Γ*inSΓ=Γwant*outLΓ=ΓandAdvanced Impedance Matching - Dr. Ray KwokSimultaneous Conjugate Match G. Gonzales: Microwave Transistor Amplifiers21122211*11222*221112211222222222111222222L121211SSSSSSSSCSSCSS1BSS1BC2C4BBC2C4BB−==∆∆−=∆−=∆−−+=∆−−+=−±=Γ−±=ΓAdvanced Impedance Matching - Dr. Ray KwokExample 01.01.0-1. 010.010.0-10.05.05.0-5.02.02.0-2.03.03.0-3.04.04.0-4.00.20.2-0.20.40.4-0.40.60.6-0.60.80.8-0.8S_ParametersSwp Max6GHzSwp Min6GHzS[1,1]ex1_raw_sparaS[2,2]ex1_raw_sparaMatch this FET


View Full Document

SJSU EE 172 - Advanced Impedance Matching

Download Advanced Impedance Matching
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Advanced Impedance Matching and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Advanced Impedance Matching 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?