New version page

SJSU EE 172 - Microwave Network Analysis

Upgrade to remove ads
Upgrade to remove ads
Unformatted text preview:

MicrowaveNetwork AnalysisMicrowave EngineeringEE 172Dr. Ray KwokMicrowave Network - Dr. Ray KwokMicrowave Matrices N – portnetworkV1+, I1+V1−, I1−V2+, I2+V2−, I2−VN+, IN+VN−, IN−• Use matrices to relate the voltages and currents of the portswithout knowing details of the network. • Z, Y, ABCD, S – matrix (+ others not covered here. e.g. T-matrix)• Useful to cascade structures, instead of working with Maxwell Eqns.Microwave Network - Dr. Ray KwokZ Matrix0I12210I111121222112112122IVZIVZIIZZZZVV==≡≡=2 – portnetworkV1 V2I1I20I22220I211211IVZIVZ==≡≡N x N matrixfor a N-port networkPort-2 openPort-1 openMicrowave Network - Dr. Ray KwokExample: T - networkCB0I222212C0I1221CA0I1111ZZIVZZZIVZZZIVZ122+=≡==≡+=≡===( )++=CBCCCAZZZZZZZV1 V2I1I2ZAZBZCZ11−Z12Z12Z22−Z12Likewise, knowing the Z-matrix, one can construct an equivalent circuit.Microwave Network - Dr. Ray KwokY Matrix0V12210V111121222112112122VIYVIYVVYYYYII==≡≡=2 – portnetworkV1 V2I1I20V22220V211211VIYVIY==≡≡N x N matrixfor a N-port networkPort-1 shortPort-2 shortMicrowave Network - Dr. Ray KwokExample: π π π π - networkCB0V222212C0V1221CA0V1111YYVIYYYVIYYYVIY122+=≡=−=≡+=≡===( )+−−+=CBCCCAYYYYYYYV1 V2I1I2YBYCYA−Y12Y11 +Y12Y22 +Y12Likewise, knowing the Y-matrix, one can construct an equivalent circuit.Microwave Network - Dr. Ray KwokReciprocal NetworkNo active elementNo ferriteZij= ZjiYij= YjiLossless NetworkAll Zij& Yijare pure imaginary“symmetric” matrixinterchangeable input – output portsFor low loss systems, this is the first approximation people useto simplify the problem significantly.Symmetrical Networkall Ziiare the same, e.g. Z11= Z22all Yiiare the sameMicrowave Network - Dr. Ray KwokABCD Matrix0I210I21221122VICVVAIVDCBAIV==≡≡=2 – portnetworkV1 V2I1I20V210V2122IIDIVB==≡≡2 x 2 matrixOnly for 2-port networkA & D are dimensionlessB has an unit of impedanceC has an unit of admittancePort-2openPort-2shortMicrowave Network - Dr. Ray KwokCascade NetworkBATOTAL33BA22A1122A11DCBADCBADCBAIVDCBADCBAIVDCBAIVIVDCBAIV====NetworkAV1 V2I1I2NetworkBV3I2I3ABCD matrix is extremely useful to cascade 2-port networks.Pay attention to the order of multiplication !!=33B22IVDCBAIVMicrowave Network - Dr. Ray KwokExample: series element0VIC1VVA0I210I2122=≡=≡==1IIDZIVB0V210V2122=≡=≡==?DCBA=ZV2= V1I2 = I1 = 0V1− I2Z = 0I 2 = I1short V2=0V1I1I2Z10Z1openV2I2=0ZV1I1Microwave Network - Dr. Ray KwokExample: shunt elementYVIC1VVA0I210I2122=≡=≡==1IID0IVB0V210V2122=≡=≡==?DCBA=YV2= V1= I1/YV2= V1 = 0I 2 = I11Y01Yopen V2V1I2=0I1Yshort V2=0V1I1I2Microwave Network - Dr. Ray KwokExample: low pass filterωωωωω=10Lj11Cj0110Lj11Cj0110Lj1DCBA32211L1L2L3C1C2Microwave Network - Dr. Ray KwokExample: T - network[ ]CCA2CA11C12ZZZVZZIVZIV+=+==CB0V21CBABA0V21ZZ1IIDZZZZZIVB22+=≡++=≡==C0I21CA0I21Z1VICZZ1VVA22=≡+=≡==V1 V2I1I2ZAZBZCOpen V2V1I2=0I1ZAZBZCshort V2=0V1I1I2ZAZBZC()[ ]++=+++=+=+=−=BACBA21CBCBACCB21CBA11CCB21C21B2ZZZZZIVZZZZZZZZIVZ//ZZIVZZZIIZIIZIMicrowave Network - Dr. Ray KwokT – network cascadeV1 V2I1I2ZAZBZC++++=+==CBCCBABACACBCBABCAZ/Z1Z/1Z/ZZZZZ/Z1DCBA1Z/ZZ/1Z110Z1DCBA10Z11Z/10110Z1DCBAsame answerMicrowave Network - Dr. Ray KwokSymmetrical & ReciprocalV1V2I1I2ZAZBZC1DCBAZZZZZZZZZZZZZZ1ZZZZZZ1ZZ1ZZ1DCBADAZ/Z1Z/1Z/ZZZZZ/Z1DCBA2CBACBCA2CBACBCACBABACCBCACBCCBABACA=−−−+++=++−++==++++=IF symmetrical networkIFreciprocal networkMicrowave Network - Dr. Ray KwokS Matrix0a12210a111121222112112122abSabSaaSSSSbb==≡≡=0a22220a211211abSabS==≡≡2 – portnetworkb1b2a1a2N x N matrixfor N-port networkOutnetworkInnetworko2ii*ii,outo2ii*ii,inoiioiiZV21bb21PZV21aa21PZVbZVa−+−+====≡≡ith-portPort – 2terminatedPort – 1terminatedZoZoMicrowave Network - Dr. Ray KwokS-parameters (matched load)1120a12211110a1111VVabSVVabS22τ==≡Γ==≡+−=+−=2 – portnetworkb1b2a1a2=0MatchedLoadReflection coefficientTransmission coefficientReturn Loss = -20 log|S11|Insertion Loss = -20 log|S21|(called rejection or isolation for out-of-band)Input a1, measure b1& b2to characterize the network.Microwave Network - Dr. Ray KwokUnmatched load2 – portnetworkb1b2a1a2= ΓLb2ZLThis is what we measure.How does that affect our matching process?L2221L1211in11L22121L121111L2212122L2212122212122L121112121111212221121121S1SSSabS1aSSaSbS1aSbbSaSaSaSbbSaSaSaSbaaSSSSbbΓ−Γ+=Γ≡Γ−Γ+=Γ−=⇒Γ+=+=Γ+=+==Microwave Network - Dr. Ray KwokMatrix Operations()()()PxNMxPMxNBAC=MCMji1ij=−( )( )bcadMacbdM1MdcbaM1−=−−=≡−ifdeterminantInverse Matrix (2 x 2)rank of matrices have to matchcomponent notation, summation impliedInverse Matrix (general)Cijis the cofactor of ji-th elementwhich is (-1)i+j* minorjiMinorjiis the deteminant withoutthe j-th row & i-th column.kjikkkjikijBABAC ≡=∑240832C21=−=( )≡087654321M35421C33−=+=e.g.( )−−−−−=−3636214232448271M1Microwave Network - Dr. Ray KwokLossless Network( )( )( )( )( ) ( )( )( ) ( ) ( )( )( )(


View Full Document
Download Microwave Network Analysis
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Microwave Network Analysis and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Microwave Network Analysis 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?