DOC PREVIEW
GT ECE 6458 - Distributed RC Interconnects

This preview shows page 1-2-16-17-18-33-34 out of 34 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 34 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Distributed RC InterconnectsGSI ClassECE6458Two types of devices: transistors and wires!silicon wafer surfaceM1M2M3M4Interconnections between transistors are stacked on top!!IBM microprocessor micrographTop view IBM Copper Processviax-y orthogonal pairInterconnect Devicesx-y orthogonal pairSide view of 4-metal level stackSide view (and zoom) of IBM Copper ProcessIBM microprocessor micrographLocalInterconnectsSemi-Global InterconnectsGlobal InterconnectsCLASS OUTLINEGOAL: Understand Interconnect Device and Circuit Models•Common Mathematical Techniques to Deriving Transient Models•Example: Simple Lumped RC Model•Example: Distributed RC Model (without transistor driver effects)•Complete single line model with real drivers (Reading)•Coupled Line SolutionsInterconnect Modeling: Lumped RC Modelelectrical modeldriverpowerAssume for the moment that driver transistors are perfect switches!+-Vdd uo(t)RCreceiverAssume for the moment that transistor receivers have negligible load capacitanceModels for Wire Resistance and CapacitanceWHρHεR LWH!!=r oWC LH!! !=•parallel plate approximation•parallel plate plus fringing field approximationModels for Wire Resistance and Capacitance1.15 2.8r oHWC LH H!" "" "# $% &= +' () *+ ,- .•resistance per unit length and capacitance per unit length defined1RrL WH!!= =1.15 2.8r oHC WcL H H!" "" "# $% &= = +' () *+ ,- .Lumped RC Model for Transient Expression+-Vdd uo(t)RC( ) ( ) ( )dd c cV u t V t dV tCR dt!=int( )cdV tI Cdt=Iint(t)Vc(t)-+Laplace Transforms•Single-Sided Laplace Transforms0( ) ( )stF s f t e dt!"=#( )( )( ) 001 1( )t a sa sF s e dt e ea s s a!" "! " "= = " =" " +#( )atf t e!=•Example:( ) ( )f t u t=•Example:( )( ) 001 1( )st sF s e dt e es s!" ! "= = " ="#•Integration in the time domain….0( )stdf t e dtdt!"# $% &' ()[ ]( ) ( ) ( ) '( ) '( ) ( )tD u t v t u t v t u t v t= +( ) ( ) ( ) '( ) '( ) ( )u t v t u t v t dt u t v t dt= +! !( ) '( ) ( ) ( ) '( ) ( )u t v t dt u t v t u t v t dt= !" "00 0( ) ( ) ( )( )st st stdf t e dt f t e f t s edt! !!" " "# $= " "% &' () )00( ) (0) ( )s stf e f e s f t e dt!" ! "# $= ! " +% &'( ) ( ) ( 0)df t sF s fdt! "Laplace Transforms( ) ( ) ( )dd c cV u t V t dV tCR R dt! =( )( )dd ccV V sCsV ssR R! =1( )1ddcVV sRCs sRC=! "+# $% &Lumped RC Model Example: Laplace Domain( )1( )A Bs s a s s a= ++ +•Partial-Fraction Expansion Technique( )1 A B s aA= + +( )0A B+ =1 aA=A B= !1Aa=1Ba= !( )1 1 1 1( )s s a a s s a! "= #$ %+ +& 'Inverse-Laplace Transforms1( )1ddcVV sRCs sRC=! "+# $% &Transient Expression using Lumped RC Model1 1( )1c ddV s VssRC! "# $= %# $# $+# $& '( ) 1 ( )tRCc dd oV t V e u t!" #= !$ %& 'Interconnect Modeling: Lumped RC Model( ) 1tRCc ddV t V e!" #= !$ %& '1tRCdd ddvV V e!" #= !$ %& 'v =• fraction of supply voltage (Vc/Vdd)1ln1vt RCv! "=# $%& '• time delay (50% and 90%)0.50.693t RC=0.92.3t RC=• using parallel plate model, shows the problem with global interconnects20.50.693 0.693r o r oLW LLtWH H H H! " " !" " !" "!# $ # $# $= =% & % &% &% & % &' (' ( ' (+-x=0ΔxrΔxcΔxx=LVdd uo(t)Interconnect Modeling: Distributed RC LineV(x,t) = voltage along the lineI(x,t) = current along the linerΔxcΔ xI(x,t)V(x+Δx,t)I(x+ Δx,t)V(x+Δx,t)•KCL( , ) ( , ) ( , )dI x t I x x t c x V x tdt! + " = "•KVL0( , ) ( , ) ( , ) 1lim ( , )xV x x t V x t V x tI x tr x x r! "+ ! # $= # =! $0( , ) ( , )lim ( , ) ( , )xI x t I x x tI x t c V x tx x t! "# + ! $ $= # =! $ $Distributed RC Line( , ) 1( , )V x tI x tx r!" =!( , ) ( , )I x t c V x tx t! !" =! !22( , ) ( , )V x t rc V x tx t! !=! !•Find solutions to this partial differential equation!!Distributed RC Line22( , ) ( , ) 0V x s rcsV x sx!" =!• Use Laplace Transform• General Solution1 1( , ) sinh( ) cosh( )V x s A x src B x src= +( )1 1( , ) 1( , ) cosh( ) sinh( )V x t srcI x s A x sr c B x srcx r r!= " = " +!Distributed RC Line• Boundary Conditions (Ideal Driver and Load)+-x=0ΔxrΔxcΔxx=LVdd uo(t)( 0, ) ( )ddV x t V u t= =( , ) 0I x L t= =•time domain•Laplace domain( 0, )ddVV x ss= =( , ) 0I x L s= =Distributed RC Line1 1( 0, ) sinh(0) cosh(0)ddVV x s A Bs= = + =• Use Boundary Conditions to solve for B11ddVBs=( )1 1( , ) cosh( ) sinh( ) 0srcI x L s A L src B L srcr= = ! + =1 1cosh( ) sinh( ) 0A L src B L src+ =1sinh( )cosh( )ddVL srcAsL src= !• Use Boundary Conditions to solve for A1Distributed RC Linesinh( )( , ) sinh( ) cosh( )cosh( )dd ddV VL srcV x s x src x srcs sL src= ! +( )2sinh( )( , ) cosh( )cosh( )dd ddL srcV VV x L s L srcs sL src= = ! +( ) ( )2 2cosh( ) sinh( )( , )cosh( ) cosh( )ddL src L srcVV x L ssL src L src! "# $= = %# $# $& '( ) ( )2 2cosh( ) sinh( ) 1L src L src! =1( , )cosh( )ddVV x L ssL src! "= =# $% &• Transfer function for any position x• Transfer function at end of lineLaplace Transform for Distributed RC Line• Assuming that T(s) can be approximated by a power series expansion• This can be transformed into a time domain expansion• To find the K coefficients, multiply both sides of (28) by sT(s)• Setting s=0 gives• Where δk is a complex root of T(s) is a solution to ( ) 0ks T s!= =Time Domain Expansion Technique• Using L’hopital’s rule gives• Solving for Kk gives:• To solve for the kth coefficient let s approach δkTime Domain Expansion Technique1( , )cosh( )ddVV x L ssL src! "= =# $% & is a solution to ( ) 0ks T s!= =( ) cosh( ) 0T s L src= =( )2 1 ; 0,1, 2,3...2kL rc j m m!"= + =( )212 1 ; 1; 0,1, 2,32km k m mrc L!"# $= % + = + =& '( )( )212 1 ; 1, 2,32kk krc L!"# $= % % =& '( )Time Domain Expansion for Distributed RC Line• Solving for δk gives:1( , )cosh( )ddVV x L ssL src! "= =# $% &1 11(0) cosh(0)oKT= = =1( ) cosh( …


View Full Document

GT ECE 6458 - Distributed RC Interconnects

Download Distributed RC Interconnects
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Distributed RC Interconnects and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Distributed RC Interconnects 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?