DOC PREVIEW
CMU CS 10708 - lecture

This preview shows page 1-2-20-21 out of 21 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 21 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Probabilistic Graphical Models10-708VariationalVariationalInference Inference Eric Xing Eric Xing Lecture 18, Nov 14, 2005Reading: KF-Chap. 9z For a distribution p(X|θ) associated with a complex graph, computing the marginal (or conditional) probability of arbitraryrandom variable(s) is intractablez Variational methodsz formulating probabilistic inference as an optimization problem:{})( maxarg*fffFS∈=queries ticprobabiliscertain tosolutions or,ondistributiy probabilit )(tractable a:fe.g.Variational Methods248-2 -1 0 1 2))(exp()exp( 1+−≥µµxx)exp(x())()()()exp()exp( 1636123+−+−+−≥µµµµ xxxx)exp(xLower bounds of exponential functionsz Exponential representation of graphical models:z Includes discrete models, Gaussian, Poisson, exponential, and many others⎭⎬⎫⎩⎨⎧−=∑ααααφθ)()(exp)|(θθ ApDXX⇒−=∑xXXααααφθ )()( state of theas toreferred is energyDE{})()(exp)|(θθAEp−−=XX{})(),(expEEHAExxXθ,−−=Exponential Family3⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+=<∑∑exp)(jiiiijiijXXXZXp01θθExample: the Boltzmanndistribution on atomic latticeLemma: Every marginal distribution q(XH) defines a lower bound of likelihood:where xEdenotes observed variables (evidence).{}()(), )(),()( )(exp)(HEHEHHEEEAEdpxxxxxxx′−−−′−≥∫1Upgradeable to higher order bound Upgradeable to higher order bound [Leisink and Kappen, 2000]Representing q(XH) by exp{-E’(XH)}:Lower bounding likelihood4Lemma: Every marginal distribution q(XH) defines a lower bound of likelihood:where xEdenotes observed variables (evidence).,)(log)(),()()(qqHHHqEHEHECqqdECpH+−=+−≥∫xxxxXxXRepresenting q(XH) by exp{-E’(XH)}:,qqHEC−−=entropy : energy expected :qqHEenergy free Gibbs : qqHE+Lower bounding likelihoodz Kullback-Leibler Distance:z “Boltzmann’s Law” (definition of “energy”):∑≡zzpzqzqpq)()(ln)()||(KLKL and variational (Gibbs) free energy[])(exp)(zECzp−=1∑∑++≡zzCzqzqzEzqpqln)(ln)()()()||(KLGibbs Free Energy ; minimized when)()(ZpZq=)(qG5KL and Log Likelihoodz Jensen’s inequalityz KL and Lower bound of likelihoodz Setting q()=q(z|x) closes the gap (c.f. EM) ∑∑∑≥===zzzxzqzxpxzqxzqzxpxzqzxpxpx)|()|,(log)|()|()|,()|(log)|,(log)|(log);(θθθθθl)(),;();( qHzxxqqcLll=+≥⇒θθ∑∑∑∑+=====zzzzxzpzqzqzqzxpzqxzpzqzqzxpzqxzpzxpzqxzpzxpxpx),|()(log)()()|,(log)(),|()()()|,(log)(),|()|,(log)(),|()|,(log)|(log);(θθθθθθθθθθl)||()();( pqqxKL+=⇒Llθln ( )pDln ( )pDL()qL( )qKL( || )qpKL( || )qp{}{}qqQqqqQqHEHEq+=−−=∈∈ minarg maxargDifficulty: Hqis intractable for general q“solution”: approximate Hqand/or, relax or tighten Qwhere Q is the equivalent sets of realizable distributions, e.g., all valid parameterizations of exponential family distributions, marginal polytopes[winright et al. 2003].A variational representation of probability distributions6z Optimize q(XH) in the space of tractable familiesz i.e., subgraph of Gpover which exact computation of Hqis feasiblez Tightening the optimization spacez exact objective:z tightened feasible set: qHTQ →qqqHEq +=∈ minarg*T)( QT ⊆Mean field methodsz Do not optimize q(XH) explicitly, but focus on the set of beliefsz e.g.,z Relax the optimization problemz approximate objective:z relaxed feasible set:z The loopy BP algorithm: z a fixed point iteration procedure that tries to solve b*{})( minarg*bFEbbbo+=∈M)}( ),,({,iijijixbxxbbττ===)(bFHq≈oMM →)( MM ⊇o) ,(,ijiBethabbHH={}∑∑==≥=iixjjixioxxxx)(),(,)(|ττττ10MBelief Propagation7Loopy Belief Propagation Loopy Belief Propagation )]([XqG)}]([{rrXbGExact:Regions:(intractable)(Kikuchi, 1951)Region-based Approximations to the Gibbs Free Energy8Bethe Approximation to Gibbs Free Energyz Bethe free energyz Equal to the exact Gibbs free energy when the factor graph is a tree because in that case,z But otherwise, it may or may not give a lower bound of the likelihoodz Optimize each b(xa)'s. z For discrete belief, constrained opt. with Lagrangean multiplier z For continuous belief, not yet a general formulaz Not always converge()()()()()∑∑∑∑−+=iaiiiiiiaaaaaBethebbdfbGxxxxxx lnln 1()()idiiiaaaxbbb−∏∏=1xx)(() ( ) ()∑∑∑∑∑∑⎭⎬⎫⎩⎨⎧−+−+=∈axXiiaaaNixiaixiiiiBetheiaiixbXbxxbGL\)( })({λγ10)(=∂∂iixbL⎟⎟⎠⎞⎜⎜⎝⎛−∝∑∈ )()(11exp)(iNaiaiiiixdxbλ0)(=∂∂aaXbL⎟⎟⎠⎞⎜⎜⎝⎛+−∝∑∈ )()()(exp)(aNiiaiaaaaxXEXbλMinimizing the Bethe Free Energy9∏≠∈→=aiNbiibiaixmx)()(ln)(λ∏∈→∝)()()(iNaiiaiixmxb∏∏∈∈→∝)(\)()()()(aNiaiNbiibaaaaxmXfXbiBethe = BPz Identifyz to obtain BP equations:z Belief in a region is the product of:z Local information (factors in region)z Messages from parent regionsz Messages into descendant regions from parents who are not descendants.z Message-update rules obtained by enforcing marginalization constraints.z Kikuchi free energyGeneralized Belief Propagation10582356 4578 568925 455612455123456789Generalized Belief Propagation582356 4578 568925 455612455585654525 →→→→∝mmmmb123456789Generalized Belief Propagation11582356 4578 568925 455612455]][[585652457845124545 →→→→→∝mmmmmfb123456789Generalized Belief Propagation582356 4578 568925 455612455123456789][452514121245ffffb∝][585645782536 →→→→mmmmGeneralized Belief Propagation12Mean Field ApproximationMean Field Approximation)]([XqG)}]([{ccXqGExact:Clusters:(intractable)Cluster-based approx. to the Gibbs free energy(Wiegerinck 2001, Xing et al 03,04)13Mean field approx. to Gibbs free energyz Given a disjoint clustering, {C1, … , CI}, of all variablesz Let z Mean-field free energyz Will never equal to the exact Gibbs free energy no matter what clustering is used, but it does always define a lower bound of the likelihood z Optimize each qi(xc)'s. z Variational calculus …z Do inference in each qi(xc) using any tractable algorithm),()(iiiqqCXX∏=()()()∑∑∑∑∏+=iCiCiiiCiiCiiiCiqqqGxxxxxx ln)(MFE()()()()()∑∑∑∑∑∑++=<ixiiiixijijixxjiiijixqxqxxqxxxqxqGln)()( e.g.,MFφφ(naïve mean field)),|()(,,,,*ijiiiiqMBHCECHCHipq≠= XxXXTheorem: The optimum GMF approximation to the cluster marginal is isomorphic to the cluster posterior of the original distribution given internal evidence and its generalized mean fields:GMF algorithm: Iterate over each qiThe Generalized Mean Field theorem14Theorem: The GMF algorithm is guaranteed to converge to a local optimum, and provides a lower bound for


View Full Document

CMU CS 10708 - lecture

Documents in this Course
Lecture

Lecture

15 pages

Lecture

Lecture

25 pages

Lecture

Lecture

24 pages

causality

causality

53 pages

lecture11

lecture11

16 pages

Exam

Exam

15 pages

Notes

Notes

12 pages

lecture

lecture

18 pages

lecture

lecture

16 pages

Lecture

Lecture

17 pages

Lecture

Lecture

15 pages

Lecture

Lecture

17 pages

Lecture

Lecture

19 pages

Lecture

Lecture

42 pages

Lecture

Lecture

16 pages

r6

r6

22 pages

lecture

lecture

20 pages

lecture

lecture

35 pages

Lecture

Lecture

19 pages

Lecture

Lecture

21 pages

lecture

lecture

13 pages

review

review

50 pages

Semantics

Semantics

30 pages

lecture21

lecture21

26 pages

MN-crf

MN-crf

20 pages

hw4

hw4

5 pages

lecture

lecture

12 pages

Lecture

Lecture

25 pages

Lecture

Lecture

25 pages

Lecture

Lecture

14 pages

Lecture

Lecture

15 pages

Load more
Download lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?