DOC PREVIEW
CMU CS 10708 - Lecture

This preview shows page 1-2-24-25 out of 25 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 25 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

1Eric Xing 1A Sketch of the Junction Tree Algorithm z The algorithm1. Moralize the graph (trivial)2. Triangulate the graph by elimination (good heuristic exist, but actually NP hard)3. Build a clique tree (using a maximum spanning tree algorithm 4. Propagation of probabilities --- a local message-passing protocolz Thm: Maximum-spanning tree of cliques ÅÆ Junction treez Results in marginal probabilities of all cliques --- solves all queries in a single runz A generic exact inference algorithm for any GMz Complexity: exponential in the size of the maximal clique --- a good elimination order often leads to small maximal clique, and hence a good (i.e., thin) JTEric Xing 2Message-passing algorithmsz Message updatez The Hugin updatez The Shafer-Shenoy updatecollect distribute∑=SVVS\*ψφWSSWψφφψ**=∑∏≠→→=ijiiSCjkkiikCijjiSmSm\)()(ψ2Eric Xing 3The Forward Algorithmz We want to calculate P(x), the likelihood of x, given the HMMz Sum over all possible ways of generating x:z To avoid summing over an exponential number of paths y, define(the forward probability)z The recursion:),,...,()(def111====kttktktyxxPyαα∑−==ikiitkttktayxp,)|(11αα∑=kkTPα)(x∑∑∑∑∏∏==−==yyxx121121yy yTtTtttyyyNttyxpapp )|(),()(,πLEric Xing 4The Forward Algorithm –derivationz Compute the forward probability:),,,...,( 111==−ktttktyxxxPα∑−==−−11111tykttttyyxxxP),,,,...,(),,...,,|(),...,,|(),,...,(111111111111−−−−−−===∑−ttkttttktyttyxxyxPxxyyPyxxPt)|()|(),,...,( 1111111===−−−∑−ktttktyttyxPyyPyxxPt)|(),,...,()|( 11111111=====−−−∑itktiittkttyyPyxxPyxPkiiitkttayxP,)|(∑−==11αAAxtx1yty1... Axt-1yt-1... ... ... ),|()|()(),,( :ruleChain BACPCBPAPCBAP=3Eric Xing 5z Elimination ≡ message passing on a clique treeE FHAE FB ACEGADCEADCB AAhmgmemfmbmcmdmRecall the Elimination and Message Passing AlgorithmA AA Ax2x3x1xTy2y3y1yT... ... ∑−==ikiitkttktayxp,)|(11αα∑=kkTPα)(x∑=efgeeamemdcepdcam),()(),|(),,(Eric Xing 6The Forward Algorithmz We can compute for all k, t, using dynamic programming!Initialization:Iteration:Termination:ktαkkkyxPπα)|( 1111==kkkkkkyxPyPyxPyxPπα)|()()|(),(111111111111=======kiiitkttktayxP,)|(∑−==11αα∑=kkTPα)(x4Eric Xing 7The Backward Algorithmz We want to compute ,the posterior probability distribution on the t thposition, given xz We start by computingz The recursion:)|( x1=ktyPForward, αtkBackward, ),...,,,,...,(),(TtkttktxxyxxPyP1111+=== x)|...()...(),,...,|,...,(),,...,(,111111111======++ktTtkttkttTtkttyxxPyxxPyxxxxPyxxP)|,...,( 11==+ktTtktyxxPβ∑+++==iitittikktyxpa111,)1|(ββA Axt+1xTyt+1yT... Axtyt... ... ... Eric Xing 8The Backward Algorithm –derivationz Define the backward probability:)|,...,( 11==+ktTtktyxxPβ∑+==++1111tykttTtyyxxP)|,,...,(),,|,...,(),|()|( 111111112111=======++++++∑ktittTtktittiktityyxxxPyyxpyyPitittiikyxpa1111+++==∑β)|(,A Axt+1xTyt+1yT... Axtyt... ... ... )|,...,()|()|( 111112111=====+++++∑itTtittiktityxxPyxpyyP),,|(),|(),()|,,( :ruleChain ααααBACPCBPAPCBAP=5Eric Xing 9The Backward Algorithmz We can compute for all k, t, using dynamic programming!Initialization:Iteration:Termination:ktβkkT∀= ,1βitittiikktyxPa1111+++==∑ββ)|(,∑=kkkP11βα)(xEric Xing 10Shafer Shenoy for HMMsz Recap: Shafer-Shenoy algorithmz Message from clique ito clique j :z Clique marginal ∑∏≠→→=ijiiSCjkkiikCjiS\)(µψµ∏→∝kkiikCiSCpi)()(µψ6Eric Xing 11Message Passing for HMMs(cont.)z A junction tree for the HMMz Rightward passz This is exactly the forward algorithm!z Leftward pass …z This is exactly the backward algorithm! A AA Ax2x3x1xTy2y3y1yT... ... ),(11xyψ),(21yyψ),(32yyψ),(TTyy1−ψ),(22xyψ),(33xyψ),(TTxyψ)(2yζ)(3yζ)(Tyζ)(1yφ)(2yφ⇒⇒),(1+ttyyψ)(ttty→−1µ),(11 ++ttxyψ)(11 ++→tttyµ)(1+↑ttyµ∑++↑++←+←−=111111tyttttttttttyyyyy )()(),()(µµψµ∑∑→−++++→−++==ttttytttyyttytttttttyayxpyxpyyyp)()|()|()()|(, 11111111µµ∑+↑→−+++→=tyttttttttttyyyyy )()(),()(11111µµψµ∑+++++←+=111111tytttttttyxpyyyp)|()()|(µ),(1+ttyyψ)(ttty←−1µ)(11 ++←tttyµ),(11 ++ttxyψ)(1+↑ttyµ12School of Computer ScienceStatistical learning with basic graphical models Probabilistic Graphical Models (10Probabilistic Graphical Models (10--708)708)Lecture 7, Oct 8, 2007Eric XingEric XingReceptor AKinase CTF FGene GGene HKinaseEKinase DReceptor BX1X2X3X4X5X6X7X8Receptor AKinase CTF FGene GGene HKinaseEKinase DReceptor BX1X2X3X4X5X6X7X8X1X2X3X4X5X6X7X8Reading: J-Chap. 5,6, KF-Chap. 87Eric Xing 13Learning Graphical ModelsThe goal:Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)(B,E,A,C,R)=(T,F,F,T,F)(B,E,A,C,R)=(T,F,T,T,F)……..(B,E,A,C,R)=(F,T,T,T,F)ERBAC0.9 0.1ebe0.2 0.80.01 0.990.9 0.1bebbeBEP(A | E,B)ERBACStructural learningParameter learningEric Xing 14Learning Graphical Modelsz Scenarios:z completely observed GMsz directedz undirected z partially or unobserved GMsz directedz undirected (an open research topic) z Estimation principles:z Maximal likelihood estimation (MLE)z Bayesian estimationz Maximal conditional likelihoodz Maximal "Margin" z We use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.8Eric Xing 15Score-based approachData),,()()( 111 nxx K),,()()( MnMxx K1K),,()()( 221 nxx KERBACERBAC….PossiblestructuresLearnparametersMaximum likelihoodBayesianConditional likelihoodMargin …Score struc/param510−1510−K310−Eric Xing 16ML Parameter Est. for completely observed GMs of given structureZXz The data:{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))}9Eric Xing 17Parameter Learningz Assume G is known and fixed,z from expert designz from an intermediate outcome of iterative structure learningz Goal: estimate from a dataset of Nindependent, identically distributed (iid) training cases D = {x1, . . . , xN}.z In general, each training case xn= (xn,1 , . . . , xn,M) is a vector of M values, one per node,z the model can be completely observable, i.e., every element in xnis known (no missing values, no hidden variables),z or, partially observable, i.e., ∃i, s.t. xn,iis not observed. z In this lecture we consider learning parameters for a single node.z Frequentist vs. Bayesian estimateEric Xing 18Bayesian Parameter Estimationz Bayesians treat the unknown parameters as a random


View Full Document

CMU CS 10708 - Lecture

Documents in this Course
Lecture

Lecture

15 pages

Lecture

Lecture

25 pages

Lecture

Lecture

24 pages

causality

causality

53 pages

lecture11

lecture11

16 pages

Exam

Exam

15 pages

Notes

Notes

12 pages

lecture

lecture

18 pages

lecture

lecture

16 pages

Lecture

Lecture

17 pages

Lecture

Lecture

15 pages

Lecture

Lecture

17 pages

Lecture

Lecture

19 pages

Lecture

Lecture

42 pages

Lecture

Lecture

16 pages

r6

r6

22 pages

lecture

lecture

20 pages

lecture

lecture

35 pages

Lecture

Lecture

19 pages

Lecture

Lecture

21 pages

lecture

lecture

21 pages

lecture

lecture

13 pages

review

review

50 pages

Semantics

Semantics

30 pages

lecture21

lecture21

26 pages

MN-crf

MN-crf

20 pages

hw4

hw4

5 pages

lecture

lecture

12 pages

Lecture

Lecture

25 pages

Lecture

Lecture

14 pages

Lecture

Lecture

15 pages

Load more
Download Lecture
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?