DOC PREVIEW
UT Arlington IE 3301 - 3301-Ch4Expectation

This preview shows page 1-2-22-23 out of 23 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 23 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

Mathematical ExpectationExpected ValueSlide 3Law of the Unconscious StatisticianSlide 5VarianceSlide 7Bivariate DistributionsDiscrete Bivariate DistributionContinuous Bivariate DistributionSlide 11Covariance and CorrelationSlide 13Slide 14Slide 15Linear CombinationsSlide 17Chebyshev’s InequalityBell-shaped DistributionsComparisonChebyshev’s Inequality ExamplesSlide 22Slide 231Mathematical ExpectationFor a r.v. X or a function g(X)•Mean or Expected Value•VarianceFor two r.v.’s X and Y or a function g(X, Y)•Expected Value•Covariance and CorrelationLinear Combinations of r.v.’sChebyshev’s Inequality2Expected ValueFor a discrete r.v. X with p.m.f. fX(x) For a continuous r.v. X with p.d.f. fX(x)Some basic rules: a, b are nonrandom•E[a] = a•E[aX] = a E[X] •E[aX + b] = a E[X] + b dxxfxXEXX)(][xXXxfxXE )(][3Expected ValueDiscrete Example: Flip 2 coins fX(0) = 1/4, fX(1) = 1/2, fX(2) = 1/4E[X] = (0)(1/4) + (1)(1/2) + (2)(1/4) = 1 on average we expect to see one headE[4X+3] = 4 E[X] + 3 = 4(1) + 3 = 1Continuous Example: fX(x) = 2(x1) for 1 < x < 2; o/w fX(x) = 0352)1(2][21221dxxxdxxxXE4Law of the Unconscious StatisticianFor a discrete r.v. X with p.m.f. fX(x), the expected value for a function g(X) isFor a continuous r.v. X with p.d.f. fX(x), the expected value for a function g(X) isThe distribution for g(X) is not needed.xXXgxfxgXgE )()()]([)( dxxfxgXgEXXg)()()]([)(5Law of the Unconscious StatisticianDiscrete Example: Flip 2 coins fX(0) = 1/4, fX(1) = 1/2, fX(2) = 1/4Continuous Example: fX(x) = 2(x1) for 1 < x < 2; o/w fX(x) = 0 6172)1(2][21232122dxxxdxxxXE4741123211134110313XE6VarianceFor any r.v. X, the variance is the expected squared deviation about its mean:•Note that variance cannot be negativeLaw of the Unconscious StatisticianSome basic rules: a, b are nonrandom•V(a) = 0•V(aX) = a2 V(X) •V(aX + b) = a2 V(X) 2222][])[()(XXXXEXEXV]))([())((2)(2)( XgXgXgEXgV7VarianceDiscrete Example: Flip 2 coins fX(0) = 1/4, fX(1) = 1/2, fX(2) = 1/4 ; E[X] = 1E[X 2] = (02)(1/4) + (12)(1/2) + (22)(1/4) = 3/2 V(X) = E[X 2]  (E[X])2 = 3/2  (1)2 = 1/2 V(4X+3) = (4)2V(X) = (16)(1/2) = 8Continuous Example:18135617])[(][)(222 XEXEXV617][;35][2 XEXE8Bivariate DistributionsFor a discrete r.v.’s X and Y with joint p.m.f. fX,Y (x, y), the expected value for a function g(X,Y) isFor a continuous r.v.’s X and Y with joint p.d.f. fX,Y (x, y), the expected value for a function g(X,Y) isx yYXYXgyxfyxgYXgE ),(),()],([,),(  dxdyyxfyxgYXgEYXYXg),(),()],([,),(9Discrete Bivariate DistributionExample: X Y 0 1 2 5 0.2 0.1 0.1 10 0.1 0.2 0.3 14.0)3.0(102)2.0(101)1.0(100)1.0(52)1.0(51)2.0(50YXE 5.9)3.0)(10)(2()2.0)(10)(1()1.0)(10)(0()1.0)(5)(2()1.0)(5)(1()2.0)(5)(0(XYE10Continuous Bivariate DistributionExample: for 0 < x < 1, 0 < y < 1)2(512),(,yxxyxfYX 101042310102,22])2([512)2()(512),()(][dydxyxyyxdydxyxxyxdxdyyxfyxYXEYX11Continuous Bivariate DistributionExample (cont’d):25451259353225184110351254)2(512][103210210105422yydyyydyxyxyyYXE12Covariance and CorrelationCovariance measures the association between two r.v.’s X and Y Correlation is the scale-free version of covariance YXYXXYXYEYXEYX][)])([(),(Cov11)()(),(CovXYYXXYXYYVXVYX13Covariance between two r.v.’s X and Y:•Cov(X,Y) > 0  Positive relationship.•Cov(X,Y) < 0  Negative relationship.•Cov(X,Y) = 0  No relationship.Correlation between two r.v.’s X and Y:•ρXY close to 1  Strong positive correlation.•ρXY close to 1  Strong negative correlation.•ρXY = 0  No correlation.Covariance and Correlation14Covariance and CorrelationDiscrete Example: X Y 0 1 2 fY (y) 5 0.2 0.1 0.1 0.4 10 0.1 0.2 0.3 0.6 fX (x) 0.3 0.3 0.4 1.0  5.9XYE0.70)6.0)(10()4.0)(5(][0.8)6.0)(10()4.0)(5(][9.1)4.0)(2()3.0)(1()3.0)(0(][1.1)4.0)(2()3.0)(1()3.0)(0(][2222222YEYEXEXE15Covariance and CorrelationDiscrete Example (cont’d):X and Y are somewhat positively correlated.7.0)0.8)(1.1(5.9])[])([(][),(Cov YEXEXYEYX0.6)8(70])[(][)(69.0)1.1(9.1])[(][)(222222YEYEYVXEXEXV344.0)0.6()69.0(7.0)()(),(CovYVXVYXXY16Linear CombinationsX and Y are r.v.’s•E[aX + bY + c] = a E[X] + b E[Y] + c•E[a g(X) + b h(Y) + c] = a E[g(X)] + b E[h(Y)] + c•V(aX + bY) = a2 V(X) + b2 V(Y) + 2ab Cov(X, Y)Discrete Example (cont’d):•E[4X  3Y + 2] = (4)(1.1)  (3)(8) + 2 = 17.6•V(4X  3Y) = (4)2(0.69) + (3)2(6) + 2(4)(3)(0.7) = (16)(0.69) + (9)(6)  (24)(0.7) = 48.240.6)(;0.8][;69.0)(;1.1][  YVYEXVXE7.0),(Cov YX17Linear CombinationsX and Y are independent r.v.’s•E[XY] = E[X] E[Y] •Cov(X, Y) = E[XY]  (E[X])(E[Y]) = 0•V(aX + bY) = a2 V(X) + b2 V(Y)X1, X2, … , Xn are mutually independent r.v.’s• niiinnnnXVaXVaXVaXVaXaXaXaV1222221212211)()()()()(18Chebyshev’s InequalityFor any distribution, the probability that r.v. X will take on a value within   k is211][kkXkP 19Bell-shaped DistributionsFor bell-shaped symmetric distributions•Approximately 68% of values within   •Approximately 95% of values within   2•Nearly 100% of values within   320Comparison21Chebyshev’s Inequality ExamplesA r.v. X has mean 8 and variance 16, but its distribution is unknown.Approximately 67.3% of the possible values of X lie between 1 and


View Full Document

UT Arlington IE 3301 - 3301-Ch4Expectation

Download 3301-Ch4Expectation
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view 3301-Ch4Expectation and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view 3301-Ch4Expectation 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?