PHYS 1111: Exam 2
27 Cards in this Set
Front | Back |
---|---|
Linear Work
|
W=Fd
W=Fdcosθ
|
Work Energy Theorem
|
Wtotal=delta K=1/2mvf^2-(1/2mvi^2)
|
Power
|
P=W/t
P=Fv
|
Potential energy
|
gravitational: U=mgy
Spring: U=1/2kx^2
|
Total Mechanical Energy
|
E=U+K
|
Total work
|
Wtotal=delta K
Wtotal=W(c)+W(nc)
|
Linear momentum
|
p=mv
|
Force
|
F=ma
F=p/t
|
Moment of Inertia
|
I=Ft
I-delta (p)
|
Inelastic collision
|
Vf=(m1v1)+(m2v2)/m1+m2
|
Elastic collision final velocity
|
V1f=(m1-m2)/(m1+m2)*Vo
V2f= (2mi)/(m1+m2)*Vo
|
Center of Mass
|
X=(m1x1)+(m2x2).../(M total)
|
Velocity of center of mass
|
=(m1v1)+(m2v2)+..../M total
|
Horsepower--> watts
|
1 hp=746 watts
|
Acceleration of center of mass
|
(m1a1)+(m2a1)/Mtotal
|
Arc length
|
S=rθ
|
Angular velocity
|
w=delta θ/delta t
(rad/s)
|
Period
|
T=2Pi/w
(s)
|
Angular acceleration
|
=delta w/delta t
(rad/s^2)
|
Tangential speed
|
Vt=rw
|
Tangential acceleration
|
at=r(angular accel)
|
Rotational kinetic energy
|
K=(1/2)Iw^2
|
Kinetic energy of rolling motion
|
K=(1/2)mv^2+(1/2)Iw^2
OR
=(1/2)mv^2+(1/2)(1+I/mr^2)
|
Torque
|
T=rF
T=r(Fsinθ)
T=I(angular accel)
T= L2-L1/delta t
T= w/delta θ
T=delta L/delta t
|
Angular momentum
|
L=Iw
L=rp
L=rpsinθ
(kg m^2/s)
|
Centripetal acceleration
|
acp=rw^2
|
Work done by Torque
|
W=Tdeltaθ
|