Unformatted text preview:

EE 232 Lightwave DevicesgLecture 20: Avalanche Photodiode (APD)Rdi Ch 144Reading: Chuang 14.4Instructor: Ming C. WuUniversity of California, BerkeleyElectrical Engineering and Computer Sciences DeptElectrical Engineering and Computer Sciences Dept.EE232 Lecture 20-1©2008. University of CaliforniaAvalanche Photodiode (APD)EE232 Lecture 20-2©2008. University of CaliforniaTypical APD Structure:Separate Absorption and Multiplication (SAM) APDEE232 Lecture 20-3©2008. University of CaliforniaIdeal APD: Injection Impact Ionization Only()()ndJ xJ1()(): electron ionization coefficient [cm ]nnnnJxdxαα−=Electron current distribution along the field:() (0)nxJx J eα=() (0)Multiplication factor:nnJx J e()(0)nWnnnJWMeJα==EE232 Lecture 20-4©2008. University of CaliforniaPractical APD: Both Electron and Hole produce Impact Ionizations()() ()ndJ xJx Jxαβ⎧=+⎪⎪() ()()() ()nn pppnn ppJx JxdxdJ xJx Jxdxαβαβ+⎪⎪⎨⎪−= +⎪⎩()nJx11: electron ionization coefficient [cm ]: hole ionization coefficient [cm ]npdxαβ−−⎩()() () 0( ) ( ) constantnpdJx JxdxJx Jx J+=+==()( ) ( ) constant()()npnnpn pJx Jx JdJ xJx Jdxαβ β+==−− =EE232 Lecture 20-5©2008. University of CaliforniaMultiplication Factor()Multiplication factor:1(0)nWJMJ==1104×0.2k=()'0(0)1'1npWxnnJdx eMαβα−−−∫1103×Mn 0 x, ()Mn02 ()nM0k=0.9k=()()11npnWnnpMeαβααββ−−=−−−10100Mn0.2x, ()Mn 0.9 x, ()0k=()npnpWnpeαβαβαββ−−−=−0 1 2 3 4 51xWαDefine 1pnkkMβα=−nWαEE232 Lecture 20-6©2008. University of California(1 )nnkWMekα−−=−Response TimeRtiGi B d idthP d tResponse time = transit time in absorption region + multiplication timeGain-Bandwidth Product:11evGBW M MptmnnmMkW MkWWττττ=+⎧=+≈⎪22constant2ennmneGBW M MMkWvGBWkWπτ π×=⋅ =⋅×==meh eabsthvvvWvτ⎪⎪⎨⎪=⎪⎩2kWπUsually hmt mvττ ττ⎪⎩→≈EE232 Lecture 20-7©2008. University of CaliforniaNoise FigureExcess noise factor F2(due to fluctuation in gain) :1(1 ) 2MFkMk⎛⎞==+−−⎜⎟⎜⎟2(1 ) 2Noise Figure:10lnnFkMkMMNF F+⎜⎟⎜⎟⎝⎠10logNF F=Small has small under high gain Minimum noise figure = 3 dB occurs when 0nkF Mk =EE232 Lecture 20-8©2008. University of CaliforniaAPD Noises22Signal is amplified by the average gain :1Mq⎛⎞1222212Shot noise is amplified by :p optqiP MMηω⎛⎞=⎜⎟⎝⎠=1109×11010×11011×11012×Slope=1at high ipNR()()22222SpBDpBDieIIIMdveIIIFMdv=++=++1106×1107×1108×110×Slope=2at lowiSN()24pBDBTedvkT viRΔ=1106−× 1105−× 1104−× 1103−× 0.01 0.1 11104×1105×ipat low ipPhotocurrenti()2221242optBqPMSNRkT vIIIFMdηω⎛⎞⎜⎟⎝⎠=Δ=Photocurrent, ipEE232 Lecture 20-9©2008. University of California()2BpBDeIIIFMdvR+++SNR Comparison of p-i-n and APD22212APD: 4optqPMSNRkT vηω⎛⎞⎜⎟⎝⎠=Δ=()242p-i-n: set 1, 1BpBDkT veI I I FM dvRMFΔ+++==()2124optqPSNRkT vηω⎛⎞⎜⎟⎝⎠=Δ=ip81109×11010×()42BpBDkT veI I I dvRΔ++ +1105×1106×1107×1108×Slope=1at highiR101001103×1104×Slope=2at low ipat high ipSNREE232 Lecture 20-10©2008. University of California1109−× 1107−× 1105−× 1103−× 0.11ipPhotocurrent,


View Full Document

Berkeley ELENG 232 - EE232 Avalanche Photodiode

Download EE232 Avalanche Photodiode
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view EE232 Avalanche Photodiode and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view EE232 Avalanche Photodiode 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?