DOC PREVIEW
ASU MAT 142 - Annuities

This preview shows page 1-2-3-4 out of 12 pages.

Save
View full document
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
View full document
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience
Premium Document
Do you want full access? Go Premium and unlock all 12 pages.
Access to all documents
Download any document
Ad free experience

Unformatted text preview:

AnnuitiesIntroductionCalculating short-term annuitiesTable of future valuesOrdinary Annuity and Annuity DueCalculating Long Term AnnuitiesContinuing the calculation of a long term annuityFormulasExampleSinking FundsSinking Fund ExampleReal – Life ExampleAnnuitiesSection 5.3Introduction•Let’s say you want to save money to go on a vacation, or you want to save money now for your baby’s college education. •A strategy for saving a little bit of money in the present and having a big payoff in the future is called an annuity.•An annuity is an account in which equal regular payments are made.•There are two basic questions with annuities:–Determine how much money will accumulate over time given that equal payments are made.–Determine what periodic payments will be necessary to obtain a specific amount in a given time period.Calculating short-term annuities•Claire wants to take a nice vacation trip, so she begins setting aside $250 per month. If she deposits this money on the first of each month in a savings account that pays 6% interest compounded monthly, how much will she have at the end of 10 months? •Claire’s first payment will earn 10 months interest. So F = 250(1 + .06/12)12(10/12). Note that the time t is 10/12. Therefore F = 250(1.005)10 = $262.79.•Claire’s second payment will earn 9 months interest. Thus F = 250(1.005)9 = $261.48.Table of future valuesPayment Future Value1st250(1.005)10 = $262.792nd250(1.005)9 = $261.483rd250(1.005)8 = $260.184th 250(1.005)7 = $258.885th 250(1.005)6 = $257.596th 250(1.005)5 = $256.317th 250(1.005)4 = $255.048th 250(1.005)3 = $253.779th 250(1.005)2 = $252.5110th 250(1.005)1 = $251.25Totaling up the future value column, we see that Claire has $2569.80 to use for her vacation. She earned $69.80 in interest.Ordinary Annuity and Annuity Due•There are two types of annuity formulas. •One formula is based on the payments being made at the end of the payment period. This called ordinary annuity.•The annuity due is when payments are made at the beginning of the payment period.•We will derive the ordinary annuity formula first.Calculating Long Term Annuities•The previous example reflects what actually happens to an annuity. •The problem is what if the annuity is for 30 years.•Future Value of the 1st payment for an ordinary annuity is •F1 = PMT(1+r/n)m-1•The future value of the next to last payment is Fm-1 = PMT(1+r/n)•The future value of the last payment is Fm = PMT.•The total future value F = F1 + F2 + F3 + … + Fm-1 + FmContinuing the calculation of a long term annuity•The future value is •Eq1•Now multiply the equation above by (1+r/n)•Eq2•Take Eq2 – Eq1•Note that m = nt. Simplifying gives the ordinary annuity future value formula      12111mnrnrnrpmtpmtpmtpmtF          mnrnrnrnrnrpmtpmtpmtpmtF  1111132   pmtpmtFFmnrnr 11 nrntnrpmtF11 Formulas•ORDINARY ANNUITY •ANNUITY DUE – receives one more period of compounding than the ordinary annuity so the formula is nrntnrpmtF11   nrnrntnrpmtF  111Example•Find the future value of an ordinary annuity with a term of 25 years, payment period is monthly with payment size of $50. Annual interest is 6%.•F = $34,649.70•Note: We only put in $15,000. This means that interest earned was $19,649.70! 1206.)25)(12(1206.1150FSinking Funds•A sinking fund is when we know the future value of the annuity and we wish to compute the monthly payment.•For an ordinary unity this formula is •For an annuity due the formula is  11 ntnrnrFpmt    111 ntnrnrnrFpmtSinking Fund Example •Suppose you decide to use a sinking fund to save $10,000 for a car. If you plan to make 60 monthly payments (5 years) and you receive 12% annual interest, what is the required payment for an ordinary annuity? 45.122$1110000)5)(12(1212.1212.pmtReal – Life Example•In 18 years you would like to have $50,000 saved for your child’s college education. At 6% annual interest, compounded monthly, what monthly deposit must be made to accomplish this goal?•The question does not specify when the payments will be made so we use both formulas for comparison.•For the ordinary annuity •For the annuity due  08.129$1150000)18)(12(1206.1206.pmt   


View Full Document

ASU MAT 142 - Annuities

Documents in this Course
Project

Project

3 pages

Project

Project

4 pages

Geometry

Geometry

57 pages

Test

Test

2 pages

Quiz 1

Quiz 1

2 pages

1-Logic

1-Logic

9 pages

Geometry

Geometry

36 pages

Quiz 1

Quiz 1

11 pages

Finance

Finance

11 pages

Finance

Finance

11 pages

Load more
Download Annuities
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Annuities and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Annuities 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?