Unformatted text preview:

18.034, Honors Differential Equations Prof. Jason Starr Lecture 26 4/9/04 1. Spent about ½ lecture working through the linear system of a pair of masses connected by a spring (of equilibrium displacement L) L)-X-k(x- ”xmbaaa= L)-X-k(x- ”xmbaba= Introduce , , X= , A='xvaa= 'XVbb=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛bbaavxvx⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−=001000000010bbaamkmkmkmk, F=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−=bamkLmkL00. Then . Physics (intuition suggests introducing FAx x' +=babammmm+=M, baabxmMxmMy +=1, baabxmMxmMyV +== '11, ba2x-xy=, ba11V-V 'y'V ==. Then G+= Byy' where ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−=000100000000010 Bmk, ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=MkL000G. Now (y1,V1) is decoupled from (y2,V2). 2. We paused at this point and solved the system by usual 2nd order method. But then we continued to ‘diagonalize’ (y2,V2). Implicit C.O.V. : → 212212ziziVzz yωω+=+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=MLiMLizii2200z'ωωωω, where Mk=ω This is now completely diagonalized: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡−mLmLezeztvyzzvytiti2200100001000010000100010,20,10,10,12111ωω. 18.034, Honors Differential Equations Prof. Jason Starr Page 1 of 3Back-substituting: ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡−0010100010010101010,20,10,10,1batbbaatibbaabbaamLmLemMimMmMimMzemMimMmMimMzttvyvxvxωωωωωω Need to choose z1,0 and z2,0 to be complex conjugate to get a real solution. eigenval = 0 eigenvector= eigenval = 0 gen. eigenvector eigenval = iω eigenvect eigenval = -iω eigenvector Particular sol’n. 3. Discussed the general eigenvector decomp. method for solving : If (λ,V) is an eigenvalue/ eigenvector pair, then is a sol’n. Ay y' =tve y(t)λ= Defined eigenvalues + eigenvectors. Defined the char. poly, A)-Idet(λ. Saw that the eigenvalues are precisely the roots of A)-Idet(λ. We did not yet define/ discuss generalized eigenspaces (although I did mention the term in the solution of the 2-mass-spring problem). 18.034, Honors Differential Equations Prof. Jason Starr Page 2 of 31. One or two problems reducing higher order constant coeff. linear systems to 1st or order linear systems (students seemed fuzzy on this). Examples: (a) : te y 3y'- 3y"- 'y" =+ , +⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−= y330100010y'⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡te00(b) 3524231211''yxyxyxyxyx===== x⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=0010110000010000010000010 x' 2. Maybe one problem going in the other direction: Example: : ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡21'212112yyyy111211112'-4y2yy'y'2y-”y'-2yyy+===3tt23tt1111Be-AeyBeAey03y4y-”y+=+==+ y1”=y2y2”=y3y3’=y1+y2y1= y y2= y’ y3= y” 3. Several diagonalizing/ eigenvalue- eigenvector problems e.g. (a) , ; ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−31134)2)(( 862++=++λλλλ2- =λ, , ⎥⎦⎤⎢⎣⎡11 4- =λ, ⎥⎥⎦⎤⎢⎢⎣⎡−11 (b) . ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡300320321By exercise (18) (This week’s Pset), 3)-2)(-1)(-(λλλ: 1 =λ, ; ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0012 =λ, ; ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0123 =λ, . ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡269 (c) , ; ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−211021)( +λ1- =λ, . ⎥⎦⎤⎢⎣⎡1118.034, Honors Differential Equations Prof. Jason Starr Page 3 of


View Full Document

MIT 18 034 - Lecture Notes

Documents in this Course
Exam 3

Exam 3

9 pages

Exam 1

Exam 1

6 pages

Load more
Download Lecture Notes
Our administrator received your request to download this document. We will send you the file to your email shortly.
Loading Unlocking...
Login

Join to view Lecture Notes and access 3M+ class-specific study document.

or
We will never post anything without your permission.
Don't have an account?
Sign Up

Join to view Lecture Notes 2 2 and access 3M+ class-specific study document.

or

By creating an account you agree to our Privacy Policy and Terms Of Use

Already a member?